【題目】如圖,矩形的對角線經(jīng)過的坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點在反比例函數(shù)的圖象上,若點的坐標(biāo)為,則的值為________.
【答案】或
【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.
如圖:
∵四邊形ABCD、HBEO、OECF、GOFD為矩形,
又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,
∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
∴S△CBDS△BEOS△OFD=S△ADBS△BHOS△OGD,
∴S四邊形CEOF=S四邊形HAGO=2×3=6,
∴xy=k2+4k+1=6,
解得,k=1或k=5.
故答案為:或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,E,D是BC邊的三等分點,F是AC的中點,BF分別交AD,AE于點G,H,則BG∶GH∶HF等于( )
A. 1∶2∶3 B. 3∶5∶2 C. 5∶3∶2 D. 5∶3∶1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系xoy中,點A、B分別在x、y軸的正半軸上,將線段AB繞點B順時針旋轉(zhuǎn)90°,點A的對應(yīng)點為點C.
(1)若A(6,0),B(0,4),求點C的坐標(biāo);
(2)以B為直角頂點,以AB和OB為直角邊分別在第一、二象限作等腰Rt△ABD和等腰Rt△OBE,連DE交y軸于點M,當(dāng)點A和點B分別在x、y軸的正半軸上運動時,判斷并證明AO與MB的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題選擇一個,九年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
(1)求共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應(yīng)的圓心角是多少;
(4)如果該校九年級共有1200名學(xué)生,請估計選擇以“友善”為主題的九年級學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以直線x=對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1),B兩點,與y軸交于C(0,5),直線l與y軸交于點D.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)直線l與拋物線的對稱軸的交點為F,G是拋物線上位于對稱軸右側(cè)的一點,若,且△BCG與△BCD面積相等,求點G的坐標(biāo);
(3)若在x軸上有且僅有一點P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,,邊、都在軸的正半軸上,點的坐標(biāo)為,,.反比例函數(shù)的圖象經(jīng)過點,交邊于點.則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店11月份購進甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.12月份,這兩種水果的進價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店12月份購進這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進甲、乙兩種水果分別是多少千克?
(2)若12月份將這兩種水果進貨總量減少到120千克,設(shè)購進甲種水果a千克,需要支付的貨款為w元,求w與a的函數(shù)關(guān)系式;
(3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若一個三角形中,其中有一個內(nèi)角是另外一個內(nèi)角的一半,則這樣的三角形叫做“半角三角形”. 例如:等腰直角三角形就是“半角三角形”.在鈍角三角形中,,,,過點的直線交邊于點.點在直線上,且.
(1)若,點在延長線上.
① 當(dāng),點恰好為中點時,依據(jù)題意補全圖1.請寫出圖中的一個“半角三角形”:_______;
② 如圖2,若,圖中是否存在“半角三角形”(△除外),若存在,請寫出圖中的“半角三角形”,并證明;若不存在,請說明理由;
(2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請直接寫出,, 滿足的數(shù)量關(guān)系:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁4名同學(xué)進行一次羽毛球單打比賽,要從中選2名同學(xué)打第一場比賽,求下列事件的概率。
(1)已確定甲打第一場,再從其余3名同學(xué)中隨機選取1名,恰好選中乙同學(xué);
(2)隨機選取2名同學(xué),其中有乙同學(xué).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com