【題目】如圖1,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾,在河的南岸邊點(diǎn)A處,測(cè)得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走50m到達(dá)C點(diǎn),測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖2,求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).

【答案】解:如圖,作BD⊥CA,交CA延長(zhǎng)線于點(diǎn)D,

設(shè)BD=xm,

∵∠BCA=30°,

∴CD= = = x,

∵∠BAD=45°,

∴AD=BD=x,

由AC+AD=CD可得50+x= x,

解得:x= =25+25 ≈68(m),

答:這段河的寬約為68m


【解析】作BD⊥CA,由銳角三角函數(shù)的定義得到tan∠BCD=,于是可求得CD的長(zhǎng),接下來(lái),由AD=BD=x,AC+AD=CD可得到50+x=x,最后,再解關(guān)于x的方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說(shuō)明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過(guò)的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:

1)小明家到學(xué)校的路程是 米.

2)小明在書店停留了 分鐘.

3)本次上學(xué)途中,小明一共行駛了 米.一共用了 分鐘.

4)我們認(rèn)為騎單車的速度超過(guò) 300 /分就超過(guò)了安全限度.問(wèn):在整個(gè)上學(xué)途中哪個(gè)時(shí)間段小明的騎車速度最快,最快速度為多少,在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知是等邊三角形,點(diǎn)為射線上任意一點(diǎn)(點(diǎn)與點(diǎn)不重合),連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連結(jié)并延長(zhǎng)交射線于點(diǎn)

1)如圖1,當(dāng)時(shí),________,猜想________;

2)如圖2,當(dāng)點(diǎn)為射線上任意一點(diǎn)時(shí),猜想的度數(shù),并說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,D、E分別是AB、BC的中點(diǎn),FCA延長(zhǎng)線上,∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長(zhǎng)為( 。

A. 16 B. 20 C. 18 D. 22

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,BCCD,E是AD的中點(diǎn),連結(jié)BE并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)F.

(1)請(qǐng)連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說(shuō)明理由.

(2)若AB=4,BC=5,CD=6,求BCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上一點(diǎn),連接BD,使∠A=2∠1,點(diǎn)E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過(guò)點(diǎn)D.

(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案