【題目】張老師將“校園詩詞大賽”所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖,部分信息如下:
(1)本次比賽選手共有_ 人,扇形統(tǒng)計(jì)圖中“”這一組人數(shù)占總參賽人數(shù)的百分比為_ ,頻數(shù)直方圖中“”這一組的人數(shù)為__ ;
(2)賽前規(guī)定,成績由高到低前的參賽選手獲獎(jiǎng)某參賽選手的比賽成績?yōu)?/span>分,試判斷他能否獲獎(jiǎng),并說明理由;
(3)成績前四名是名男生和名女生,若從他們中任選人作為全區(qū)“詩詞大會(huì)”重點(diǎn)培訓(xùn)對象,試求恰好選中男女的概率.
【答案】(1)40,45%,4;(2)能獲獎(jiǎng),理由見解析;(3).
【解析】
(1)根據(jù)扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖得出69.5~79.5這組所占的百分比和頻數(shù),可得本次比賽選手總?cè)藬?shù);計(jì)算89.5~94.5這組所占百分比,用總數(shù)乘以79.5~89.5這組所占的百分比即可得到結(jié)果;用總數(shù)乘以94.5~99.5這組所占的百分比即可得到結(jié)果;
(2)計(jì)算出前55%的人數(shù)其最低分值,可以判斷結(jié)果;
(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進(jìn)行求解即可.
(1)由扇形統(tǒng)計(jì)圖可知69.5~79.5這組所占為20%,
由頻數(shù)分布直方圖得69.5~79.5這組的頻數(shù)為:3+5=8,
∴參賽選手總數(shù)為:(人)
又∵89.5~94.5這組所占的百分比為:10
∴79.5~89.5這組所占的百分比為:
∴94.5~99.5這組的頻數(shù)為:40(人)
他能獲獎(jiǎng).理由如下:“”這一組人數(shù)為分以上的人數(shù)占總參賽人數(shù)的百分比為,即分以上的選手可獲獎(jiǎng)
畫樹狀圖如解圖:
由樹狀圖知,共有種等可能結(jié)果,
其中恰好選中男女的結(jié)果共有種,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(0,4),B(﹣4,0),C(4,0).
(1)如圖①,若∠BAD=15°,AD=3,求點(diǎn)D的坐標(biāo);
(2)如圖②,AD=2,將△ABD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)得到△ACE,點(diǎn)B,D的對應(yīng)點(diǎn)分別為C,E.連接DE,BD的延長線與CE相交于點(diǎn)F.
①求DE的長;
②證明:BF⊥CE.
(3)如圖③,將(2)中的△ADE繞點(diǎn)A在平面內(nèi)旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中點(diǎn)D,E的對應(yīng)點(diǎn)分別為D1,E1,點(diǎn)N,P分別為D1E1,D1C的中點(diǎn),請直接寫出△OPN面積S的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面坐標(biāo)系中,正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點(diǎn).
(1)分別求出這兩個(gè)函數(shù)的解析式;
(2)將直線OA向上平移3個(gè)單位后與軸交于點(diǎn)B,與反比例函數(shù)的圖像在第四象限內(nèi)的交點(diǎn)為C,連接,求的面積
(3)在(2)的條件下,反比例函數(shù)的圖像上是否存在點(diǎn)D使得?若存在直接寫出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.
求證:
(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x+m)2+n的頂點(diǎn)在線段AB上,與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為﹣3,則點(diǎn)D的橫坐標(biāo)的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的單位正方形網(wǎng)格中,△ABC(點(diǎn)B與原點(diǎn)O重合)經(jīng)過平移后得到△A1B1C1,已知在AC上一點(diǎn)P(2.4,2)平移后的對應(yīng)點(diǎn)為P1,點(diǎn)P1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°,得到對應(yīng)點(diǎn)P2,則P2點(diǎn)的坐標(biāo)為( )
A.(1.4,1)B.(1.5,2)C.(1.6,1)D.(2.4,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E是CD邊上一點(diǎn)(CE>DE),AE,BD交于點(diǎn)F.
(1)如圖1,過點(diǎn)F作GH⊥AE,分別交邊AD,BC于點(diǎn)G,H.
求證:∠EAB=∠GHC;
(2)AE的垂直平分線分別與AD,AE,BD交于點(diǎn)P,M,N,連接CN.
①依題意補(bǔ)全圖形;
圖1 備用圖
②用等式表示線段AE與CN之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一塊長為米,寬為米的長方形地塊,規(guī)劃部門計(jì)劃將陰影部分進(jìn)行綠化,中間將修建一座雕像,左右兩邊修兩條寬為米的道路.().
(1)①試用含的代數(shù)式表示綠化的面積是多少平方米?
②假設(shè)陰影部分可以拼成一個(gè)矩形.請你求出所拼矩形相鄰兩邊的長:如果要使所拼矩形面積最大,求與滿足的關(guān)系式;
(2)若,請求出綠化面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com