【題目】數(shù)軸上有分別表示—72的兩點(diǎn)A、B,若將數(shù)軸沿點(diǎn)B對折,使點(diǎn)A與數(shù)軸上的另一點(diǎn)C重合,則點(diǎn)C表示的數(shù)為________

【答案】11

【解析】

由題意知中點(diǎn)的值為2,利用中點(diǎn)即可求出A與哪個(gè)數(shù)重合.

由于C與表示-7的點(diǎn)重合,此時(shí)的中點(diǎn)為表示2的點(diǎn),

∴C2的距離和2-7的距離相等,

∴11與表示-7的點(diǎn)重合.

故答案為:11.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC=5,BC=6,以AC為一邊作正方形ACDE,過點(diǎn)DDFBC交直線BC于點(diǎn)F,連接AF,請你畫出圖形,直接寫出AF的長,并畫出體現(xiàn)解法的輔助線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三個(gè)連續(xù)奇數(shù),中間的一個(gè)是n,則這三個(gè)數(shù)的和是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手工課上,老師要求同學(xué)們將邊長為4cm的正方形紙片恰好剪成六個(gè)等腰直角三角形,聰明的你請?jiān)谙铝兴膫(gè)正方形中畫出不同的剪裁線,并直接寫出每種不同分割后得到的最小等腰直角三角形面積(注:不同的分法,面積可以相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在方格紙中,ABC的三個(gè)頂點(diǎn)及D,E,F,G,H五個(gè)點(diǎn)分別位于小正方形的頂點(diǎn)上.

(1)現(xiàn)以DE,F,G,H中的三個(gè)點(diǎn)為頂點(diǎn)畫三角形,在所畫的三角形中與ABC不全等但面積相等的三角形是 (只需要填一個(gè)三角形);

(2)先從D,E兩個(gè)點(diǎn)中任意取一個(gè)點(diǎn),再從F,G,H三個(gè)點(diǎn)中任意取兩個(gè)不同的點(diǎn),以所取的這三個(gè)點(diǎn)為頂點(diǎn)畫三角形,畫樹狀圖求所畫三角形與ABC面積相等的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AC=BC=2,D是邊AB上一動(dòng)點(diǎn)(A、B兩點(diǎn)除外),將△CAD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)角α得到△CEF,其中點(diǎn)E是點(diǎn)A的對應(yīng)點(diǎn),點(diǎn)F是點(diǎn)D的對應(yīng)點(diǎn)

(1)如圖1,當(dāng)α=90°時(shí),G是邊AB上一點(diǎn),且BG=AD,連接GF.求證:GF∥AC;

(2)如圖2,當(dāng)90°≤α≤180°時(shí),AE與DF相交于點(diǎn)M

①當(dāng)點(diǎn)M與點(diǎn)C、D不重合時(shí),連接CM,求∠CMD的度數(shù);

②設(shè)D為邊AB的中點(diǎn),當(dāng)α從90°變化到180°時(shí),求點(diǎn)M運(yùn)動(dòng)的路徑長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一臺(tái)電視機(jī)的原價(jià)是2000元,若按原價(jià)的八折出售,則購買a臺(tái)這樣的電視機(jī)需要元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)置一種記分的方法:85分以上如88分記為+3分,某個(gè)學(xué)生在記分表上記為–6分,則這個(gè)學(xué)生的分?jǐn)?shù)應(yīng)該是

A. 91 B. –91

C. 79 D. –79

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠BAC,∠EAD=∠EDA.

(1)∠EAC與∠B相等嗎?為什么?

(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案