【題目】二次函數(shù)y=ax2+bx+c圖象的一部分如圖所示.已知它的頂點(diǎn)M在第二象限,且經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(0,l).若此二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為C.
(1)試求a,b所滿(mǎn)足的關(guān)系式;
(2)當(dāng)△AMC的面積為△ABC面積的倍時(shí),求a的值;
(3)是否存在實(shí)數(shù)a,使得△ABC為直角三角形.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】 (1)a+b=-1;(2)a=-4+;(3)不存在.
【解析】
(1)把點(diǎn)A(1,0)和點(diǎn)B(0,1)的坐標(biāo)代入拋物線的解析式,就可以得到關(guān)于a,b,c關(guān)系式.整理就得到a,b的關(guān)系.
(2)利用公式求出拋物線的頂點(diǎn)的縱坐標(biāo),進(jìn)而表示出△AMC的面積,根據(jù)就可以得到關(guān)于a的方程,解得a的值;
(3)本題應(yīng)分A是直角頂點(diǎn),B是直角頂點(diǎn),C是直角頂點(diǎn)三種情況進(jìn)行討論.
(1)將A(1,0),B(0,l)代入y=ax2+bx+c得:
,可得:a+b=-1
(2)(2)∵a+b=1,
∴b=a1代入函數(shù)的解析式得到:y=ax2(a+1)x+1,
頂點(diǎn)M的縱坐標(biāo)為 ,
因?yàn)?/span>
由同底可知:=
整理得:a2+8a+1=0,得:a=-4±
由圖象可知:a<0,因?yàn)閽佄锞過(guò)點(diǎn)(0,1),頂點(diǎn)M在第二象限,其對(duì)稱(chēng)軸x=,
∴-1<a<0,
∴a=-4-舍去,從而a=-4+
(3)① 由圖可知,A為直角頂點(diǎn)不可能;
② 若C為直角頂點(diǎn),此時(shí)與原點(diǎn)O重合,不合題意;
③ 若設(shè)B為直角頂點(diǎn),則可知,得:
令,可得:,,
得:,
∴
解得:a=-1,由-1<a<0,不合題意.所以不存在
綜上所述:不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商貿(mào)公司有、兩種型號(hào)的商品需運(yùn)出,這兩種商品的體積和質(zhì)量分別如下表所示:
體積(立方米/件) | 質(zhì)量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號(hào),體積一共是20立方米,質(zhì)量一共是10.5噸,求、兩種型號(hào)商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車(chē)每輛額定載重3.5噸,容積為6立方米,其收費(fèi)方式有以下兩種:
①按車(chē)收費(fèi):每輛車(chē)運(yùn)輸貨物到目的地收費(fèi)600元;
②按噸收費(fèi):每噸貨物運(yùn)輸?shù)侥康牡厥召M(fèi)200元.
現(xiàn)要將(1)中商品一次或分批運(yùn)輸?shù)侥康牡,如果兩種收費(fèi)方式可混合使用,商貿(mào)公司應(yīng)如何選擇運(yùn)送、付費(fèi)方式,使其所花運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)南充市創(chuàng)建“全國(guó)衛(wèi)生城市”的號(hào)召,某校1 500名學(xué)生參加了衛(wèi)生知識(shí)競(jìng)賽,成績(jī)記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說(shuō)法不正確的是( )
A.樣本容量是200
B.D等所在扇形的圓心角為15°
C.樣本中C等所占百分比是10%
D.估計(jì)全校學(xué)生成績(jī)?yōu)锳等大約有900人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為鄧小平誕辰110周年獻(xiàn)禮,廣安市政府對(duì)城市建設(shè)進(jìn)行了整改,如圖,已知斜坡AB長(zhǎng)60米,坡角(即∠BAC)為45°,BC⊥AC,現(xiàn)計(jì)劃在斜坡中點(diǎn)D處挖去部分斜坡,修建一個(gè)平行于水平線CA的休閑平臺(tái)DE和一條新的斜坡BE(下面兩個(gè)小題結(jié)果都保留根號(hào)).
(1)若修建的斜坡BE的坡比為:1,求休閑平臺(tái)DE的長(zhǎng)是多少米?
(2)一座建筑物GH距離A點(diǎn)33米遠(yuǎn)(即AG=33米),小亮在D點(diǎn)測(cè)得建筑物頂部H的仰角(即∠HDM)為30°.點(diǎn)B、C、A、G,H在同一個(gè)平面內(nèi),點(diǎn)C、A、G在同一條直線上,且HG⊥CG,問(wèn)建筑物GH高為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2-mx+-=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么□ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在BC、CD上移動(dòng),但A到EF的距離AH始終保持與AB長(zhǎng)相等,問(wèn)在E、F移動(dòng)過(guò)程中:
(1)∠EAF的大小是否有變化?請(qǐng)說(shuō)明理由.
(2)△ECF的周長(zhǎng)是否有變化?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)結(jié)論)
(1)如圖,在□ABCD中,AB≠BC,將△ABC沿AC翻折至△AB′C,連結(jié)B′D,發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:①△EAC是等腰三角形 ②AC//B′D 請(qǐng)你選擇其中一個(gè)結(jié)論加以證明
(結(jié)論運(yùn)用)
(2)在□ABCD中,已知:BC=2,∠B=60°,將△ABC沿AC翻折至△AB′C,連結(jié)B′D(如上圖).若四邊形ACDB′是矩形,求AC的長(zhǎng).
(方法拓展)
(3)若 =k,且以A、C、D、B′為頂點(diǎn)的四邊形為正方形,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE ,設(shè)∠BAD=α,∠CDE=β.
(1)如圖,若點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.
①如果∠ABC=60°,∠ADE=70°, 那么α=_______,β=_______.
②求α、β之間的關(guān)系式.
(2)是否存在不同于以上②中的α、β之間的關(guān)系式?若存在,求出這個(gè)關(guān)系式,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com