【題目】如圖,已知平行四邊形ABCD中,AEBC于點E,以點B為中心,取旋轉角等于∠ABC,把△BAE順時針旋轉,得到△BAE′,連接DA′若∠ADC=60°,∠ADA=45°,則∠DAE=______度.

【答案】165°

【解析】

根據(jù)平行四邊形的性質、三角形外角的性質和旋轉的性質分別求出∠DA′B和∠B A′E′的度數(shù)即可.

解:∵∠ADC=60°,∠ADA′=45°

∴∠A′DC=15°,∠DCB=120°,∠ABC=60°,

∴∠DA′B=A′DC+DCB=135°,

∵∠AEB=90°

∴∠BAE=30°,

∴∠B A′E′=30°

∴∠DA′E′= DA′B+B A′E′=165°,

故答案為:165.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點,則k的值為______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,O為坐標原點,點A坐標為(20),以OA為邊在第一象限內作等邊OAB,Cx軸正半軸上的一個動點(OC2),連接BC,以BC為邊在第一象限內作等邊BCD,直線DAy軸于E點.

1)求證:OBC≌△ABD

2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.

3)以線段BC為直徑作圓,圓心為點F,當C點運動到何處時,直線EF∥直線BO;這時⊙F和直線BO的位置關系如何?請給予說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點Am,6),B6,1)在反比例函數(shù)圖象上,作直線AB,連接OA、OB

1)求反比例函數(shù)的表達式和m的值;

2)求AOB的面積;

3)如圖2E是線段AB上一點,作ADx軸于點D,過點Ex軸的垂線,交反比例函數(shù)圖象于點F,若EFAD,求出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CDl垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD30°,∠CBD60°

1)求AB的長(結果保留根號);

2)已知本路段對校車限速為45千米/小時,若測得某輛校車從AB用時2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):1.71.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:

如:解方程.

解:原方程可變形,得

.

,

直接開平方并整理,得,.

我們稱曉東這種解法為“平均數(shù)法”.

(1)下面是曉東用“平均數(shù)法”解方程時寫的解題過程.

.

,

.

直接開平方并整理,得,.

上述過程中的“□”,“○”,“☆”,“¤”表示的數(shù)分別為________,________,________,________.

(2)請用“平均數(shù)法”解方程:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點M(﹣53)分別作x軸,y軸的垂線與反比例函數(shù)y的圖象交于A,B兩點,若四邊形MAOB的面積為24,則k_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“數(shù)學來源于生活,又運用于生活”曹老師為了了解所教班級學生利用數(shù)學知識解決實際問題的能力,編制若干問題對全班學生進行了一次測試,并將測試結果分成四類,A特別強:B:強;C:一般:D較弱以下是由調查測試結果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖完成以下解答.

1)曹老師的班級共有   名學生;

2)將下面條形統(tǒng)計圖的C類部分補充完整;

3)扇形統(tǒng)計圖中,D類對應的圓心角為多少度.

查看答案和解析>>

同步練習冊答案