【題目】如圖,△ABC中,ABAC,

(1)請你利用直尺和圓規(guī)完成如下操作:

①作△ABC的角平分線AD

②作邊AB的垂直平分線EF,EFAD相交于點P;

③連接PB,PC

請你觀察圖形解答下列問題:

2)線段PAPB,PC之間的數(shù)量關系是   ;請說明理由.

3)若∠ABC70°,求∠BPC的度數(shù).

【答案】1)見解析;(2PA=PB=PC,理由見解析;(380°

【解析】

1)利用基本作圖作角平分線ADAB的垂直平分線,它們相交于P點;

2)根據(jù)線段的垂直平分線的性質可得:PA=PB=PC;
3)根據(jù)等腰三角形的性質得:∠ABC=ACB=70°,由三角形的內角和得:∠BAC=180°-2×70°=40°,由角平分線定義得:∠BAD=CAD=20°,最后利用三角形外角的性質可得結論.

解:(1)如圖,AD、EF 、點P為所作;

2PA=PB=PC,理由:
AB=ACAD平分∠BAC,
ADBC的垂直平分線,
PB=PC,
EPAB的垂直平分線,
PA=PB,
PA=PB=PC;
故答案為:PA=PB=PC;
3)∵AB=AC,
∴∠ABC=ACB=70°
∴∠BAC=180°-2×70°=40°,
AM平分∠BAC
∴∠BAD=CAD=20°,
PA=PB=PC,
∴∠ABP=BAP=ACP=20°
∴∠BPC=ABP+BAC+ACP=20°+40°+20°=80°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,BDABC的平分線,點OAB上,O經(jīng)過B,D兩點,交BC于點E

1)求證:ACO的切線;

2)若AB=6sinBAC=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分線,DEBC,垂足為D.

1)請你寫出圖中所有的等腰三角形;

2)請你判斷ADBE垂直嗎?并說明理由.

3)如果BC=10,求AB+AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°,EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以ABAD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證AF=AE;

3如圖3CED繞點C繼續(xù)逆時針旋轉當平行四邊形ABFD為菱形,CEDABC的下方時,AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCDFAB上一點HBC延長線上一點,連接FHFBH沿FH翻折使點B的對應點E落在AD,EHCD交于點G,連接BGFH于點M,GB平分CGEBM=2,AE=8,ED=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖a是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖b的形狀,拼成一個正方形.

1圖b中的陰影部分面積為 ;

觀察圖b,請你寫出三個代數(shù)式,,mn之間的等量關系是 ;

3若x+y=6,xy=2.75,利用提供的等量關系計算:xy= ;

4實際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖C,它表示了2+3mn+=m+n)(2m+n,試畫出一個幾何圖形的面積是+4ab+3,并能利用這個圖形將+4ab+3進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有關部門從甲、乙兩個城市所有的自動售貨機中分別隨機抽取了16臺,記錄下某一天各自的銷售情況(單位:元):

甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41

乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23

小強用如圖所示的方法表示甲城市16臺自動售貨機的銷售情況.

(1)請你仿照小強的方法將乙城市16臺自動售貨機的銷售情況表示出來;

(2)請你觀察圖1,你能從圖1中獲取哪些信息?(至少寫出兩條不同類型信息)

(3)小芳用圖2的條形統(tǒng)計圖表示甲城市16臺自動售貨機的銷售情況,請你觀察圖2,你能從圖2中獲取哪些信息?(至少寫出兩條不同類型信息)

(4)如果收集到的數(shù)據(jù)很多,例如有200個,你認為圖1和圖2這兩種統(tǒng)計圖用哪一種更能直觀的反映這些數(shù)據(jù)分布的大致情況?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.

查看答案和解析>>

同步練習冊答案