【題目】如圖,下列條件中,能得到DG∥BC的是( 。
A.CD⊥AB,EF⊥AB
B.∠1=∠2
C.∠1=∠2,∠4+∠5=180°
D.CD⊥AB,EF⊥AB,∠1=∠2
【答案】D
【解析】A不能;∵CD⊥AB,EF⊥AB,∴CD∥EF,再?zèng)]有條件得出DG∥BC;∴A不能;B不能,∵∠1=∠2不能得到DG∥BC,∴B不能;C不能;∵∠4+∠5=180°,∴DG∥CG,不能得出DG∥BC,∴C不能;D能;∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥BC,
∴D能;故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的判定的相關(guān)知識(shí),掌握同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD的邊DC延長至點(diǎn)E , 使CE=DC , 連接AE , 交BC于點(diǎn)F .
(1)求證:△ABF≌△ECF;
(2)連接AC、BE , 則當(dāng)∠AFC與∠D滿足什么條件時(shí),四邊形ABEC是矩形?請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥品經(jīng)過兩次降價(jià),每瓶零售價(jià)由100元降為81元.已知兩次降價(jià)的百分率都為x,那么x滿足的方程是( )
A.100(1+x)2=81
B.100(1﹣x)2=81
C.100(1﹣x%)2=81
D.100x2=81
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=90°,AD∥BC , BE⊥CD于E交AD的延長線于F , DC=2AD , AB=BE .
(1)求證:AD=DE .
(2)求證:四邊形BCFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,□ABCD中,AB=4,BC=5,對(duì)角線相交于點(diǎn)O , 過點(diǎn)O的直線分別交AD , BC于點(diǎn)E , F , 且OE=1.5,則四邊形EFCD的周長為( ).
A.10
B.12
C.14
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)一點(diǎn)P(3,-1)關(guān)于原點(diǎn)對(duì)稱的坐標(biāo)為_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com