【題目】已知平面上四個點.
(1)按下列要求畫圖(不寫畫法)
①連接,;②作直線;③作射線,交于點.
(2)在(1)所畫的圖形中共有__________條線段,__________條射線. (所畫圖形中不能再添加標(biāo)注其他字母);
(3)通過測量線段,,,可知__________(填“”,“”或“”),可以解釋這一現(xiàn)象的基本事實為:_______________________.
【答案】(1)見解析;(2)8條線段; 9條射線;(3) ;兩點之間線段最短.
【解析】
(1)根據(jù)線段、直線、射線的定義畫圖即可;
(2)按照線段、射線的定義計數(shù)即可;
(3) ,可以解釋這一現(xiàn)象的基本事實為:兩點之間線段最短.
解:(1)①如圖線段AB,DC即為所求;
②如圖直線AC即為所求;
③如圖射線DB即為所求;
(2)在(1)所畫的圖形中共有8條線段,分別是線段AB、AO、AC、OC、BO、BD、OD、CD;共有9條射線,分別是射線OA、OB、OC、CA、AC、DB和分別以點A為端點向左的射線,以點B為端點向下的射線,以點C為端點向右的射線;
(3)通過測量線段,,,可知 ,可以解釋這一現(xiàn)象的基本事實為:兩點之間線段最短.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, A、B兩地被池塘隔開, 小明通過下列方法測出了A、B間的距離: 先在AB外選一點C, 然后測出AC、BC的中點M、N,并測量出MN的長為12m, 由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是( )
A. CM : MA = 1 : 2 B. MN∥AB C. △CMN ∽△CAB D. AB=24m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有以下運算程序,如圖所示:
比如,輸入數(shù)對(2,1),輸出W=2.
(1)若輸入數(shù)對(1,﹣2),則輸出W= ;
(2)分別輸入數(shù)對(m,﹣n)和(﹣n,m),輸出的結(jié)果分別是W1,W2,試比較W1,W2的大小,并說明理由;
(3)設(shè)a=|x﹣2|,b=|x﹣3|,若輸入數(shù)對(a,b)之后,輸出W=26,求a+b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明準(zhǔn)備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計:
說明:方案一圖形中的圓過點A,B,C,圓心O也是正方形的頂點;
回答問題(直接寫出結(jié)果):
(1)方案二中,直角三角形紙片的兩條直角邊長分別為_______cm和_______cm;
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率是________(填準(zhǔn)確值),近似值約為38.2%.相比之下,方案二的利用率是________%.小明感覺上面兩個方案的利用率均偏低,又進(jìn)行了新的設(shè)計(方案三),請直接寫出方案三的利用率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃購買一批課外讀物,為了了解學(xué)生對課外讀物的需求情況,學(xué)校進(jìn)行了一次“我最喜愛的課外讀物”的調(diào)查,設(shè)置了“文學(xué)”、“科普”、“藝術(shù)”和“其他”四個類別,規(guī)定每人必須并且只能選擇其中一類,現(xiàn)從全體學(xué)生的調(diào)查表中隨機抽取了部分學(xué)生的調(diào)查表進(jìn)行統(tǒng)計,并把統(tǒng)計結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.
(1) 從全體學(xué)生的調(diào)查表中隨機抽取了多少名學(xué)生?
(2) 將條形圖補充完整;
(3) 藝術(shù)類讀物所在扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請仔細(xì)閱讀下面兩則材料,然后解決問題:
材料1:小學(xué)時我們學(xué)過,任何一個假分?jǐn)?shù)都可以化為一個整數(shù)與一個真分?jǐn)?shù)的和的形式,同樣道理,任何一個分子次數(shù)不低于分母次數(shù)的分式都可以化為一個整式與另一個分式的和(或差)的形式,其中分式的分子次數(shù)低于分母次數(shù).
如:.
材料2:對于式子,利用換元法,令,.則由于,所以反比例函數(shù)有最大值,且為3.因此分式的最大值為5.
根據(jù)上述材料,解決下列問題:
(1)把分式化為一個整式與另一個分式的和的形式,其中分式的分子次數(shù)低于分母次數(shù).
(2)當(dāng)的值變化時,求分式的最大(或最。┲.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com