【題目】在△ABC中,BC=AC,∠C=90°,直角頂點(diǎn)C在x軸上,一銳角頂點(diǎn)B在y軸上.
(1)如圖①若AD于垂直x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(﹣1,0),點(diǎn)A的坐標(biāo)是(﹣3,1),求點(diǎn)B的坐標(biāo).
(2)如圖②,直角邊BC在兩坐標(biāo)軸上滑動(dòng),若y軸恰好平分∠ABC,AC與y軸交于點(diǎn)D,過點(diǎn)A作AE⊥y軸于E,請(qǐng)猜想BD與AE有怎樣的數(shù)量關(guān)系,并證明你的猜想.
(3)如圖③,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過程中,請(qǐng)猜想OC,AF,OB之間有怎樣的關(guān)系(直接寫出結(jié)論,不需要證明)
【答案】(1)(0,2);(2)BD=2AF;(3)OC=OB+AF.
【解析】試題分析:(1)只要求出Rt△ADC≌Rt△COB即可求.
(2)先說明BD與AE有怎樣的數(shù)量關(guān)系,然后針對(duì)得到的數(shù)量關(guān)系,作出合適的輔助線,畫出相應(yīng)的圖形,根據(jù)等腰三角形底邊上的高、底邊上的中線、頂角的平分線三線合一,可以最終證得所要說明的數(shù)量關(guān)系;
(3)先猜想OC、AF、OB之間的關(guān)系,然后根據(jù)猜想作出合適的輔助線,畫出相應(yīng)的圖形,然后證明所要證明的結(jié)論即可.
試題解析:(1)∵點(diǎn)C坐標(biāo)是(1,0),點(diǎn)A的坐標(biāo)是(3,1)
∴AD=OC,
在Rt△ADC和Rt△COB中, ,
∴Rt△ADC≌Rt△COB(HL),
∴OB=CD=2,
∴點(diǎn)B的坐標(biāo)是(0,2);
(2)BD=2AF,
理由:作AE的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)F,如下圖所示,
∵△ABC是等腰直角三角形,BC=AC,直角頂點(diǎn)C在x軸上,AE⊥y軸于E,
∴∠BCA=∠ACF=90°,∠AED=90°,
∴∠DBC+∠BDC=90°,∠DAE+∠ADE=90°,
∵∠BDC=∠ADE,
∴∠DBC=∠FAC,
在△BDC和△AFC中,
,
∴△BDC≌△AFC(ASA)
∴BD=AF,
∵BE⊥AE,y軸恰好平分∠ABC,
∴AF=2AE,
∴BD=2AF;
(3)OC=OB+AF,
證明:作AE⊥OC于點(diǎn)E,如下圖所示,
∵AE⊥OC,AF⊥y軸,
∴四邊形OFAE是矩形,∠AEC=90°,
∴AF=OE,
∵△ABC是等腰直角三角形,BC=AC,直角頂點(diǎn)C在x軸上,∠BOC=90°,
∴∠BCA=90°,
∴∠BCO+∠CBO=90°,∠BCO+∠ACE=90°,
∴∠CBO=∠ACE,
在△BOC和△CEO中,
,
∴△BOC≌△CEO(AAS)
∴OB=CE,
∵OC=OE+EC,OE=AF,OB=EC,
∴OC=OB+AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,左面的幾何體叫三棱柱,它有五個(gè)面,條棱,個(gè)頂點(diǎn),中間和右邊的幾何體分別是四棱柱和五棱柱.
四棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;
五棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;
你能由此猜出,六棱柱、七棱柱各有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?
棱柱有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查方式合適的是( )
A. 為了了解外地游客對(duì)岳陽樓新景區(qū)的感受,小華利用周日在汴河街隨機(jī)采訪了名武漢游客
B. 為了了解全校學(xué)生用于做數(shù)學(xué)作業(yè)的時(shí)間,小民同學(xué)在網(wǎng)上通過向位好友做了調(diào)查
C. 為了了解“嫦娥一號(hào)”衛(wèi)星零部件的狀況,檢測(cè)人員采用了普查的方式
D. 為了了解全國青少年兒童在陽光體育運(yùn)動(dòng)啟動(dòng)后的睡眠時(shí)間,統(tǒng)計(jì)人員采用了普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)為(0,3),則方程ax2+bx+c=0(a≠0)的解為( )
A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計(jì)調(diào)查問卷時(shí),下列提問是否合適?如果不合適的話應(yīng)該怎樣改進(jìn)?
(1)你上學(xué)時(shí)使用的交通工具是
.汽車.摩托車.步行.其他
(2)你對(duì)老師的教學(xué)滿意嗎?
.比較滿意.滿意.非常滿意.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一塊邊長(zhǎng)為1,周長(zhǎng)記為P1的正三角形紙板,沿圖①的底邊剪去一塊邊長(zhǎng)為的正三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長(zhǎng)為前一塊被剪如圖掉正三角形紙板邊長(zhǎng)的)后,得圖③,④,…,記第n(n≥3)塊紙板的周長(zhǎng)為Pn,則P2018﹣P2017的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊△ABC內(nèi)的一點(diǎn),且PA=5,PB=4,PC=3,將△APB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到△CQB.求:
(1)點(diǎn)P與點(diǎn)Q之間的距離;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BE∥DF的是( )
A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com