【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發(fā),則△BPQ的面積y與運動時間t(t≤4)的函數(shù)圖象是( )

A.
B.
C.
D.

【答案】B
【解析】解:①點P在AB上運動,點Q在BC上運動,即0≤t≤2,
此時AP=t,BP=4﹣t,QB=2t,故可得y= PBQB= (4﹣t)2t=﹣t2+4t,函數(shù)圖象為開口向下的拋物線;②點P在AB上運動,點Q在CD上運動,即2<t≤4
此時AP=t,BP=4﹣t,△BPQ底邊PB上的高保持不變,為正方形的邊長4,
故可得y= BP×4=﹣2t+8,函數(shù)圖象為直線.
綜上可得全過程的函數(shù)圖象,先是開口向下的拋物線,然后是直線;
故選:B.
本題應分兩段進行解答,①點P在AB上運動,點Q在BC上運動,②點P在AB上運動,點Q在CD上運動,依次得出y與t的關系式即可得出函數(shù)圖象.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁4位同學進行一次乒乓球單打比賽,要從中選2名同學打第一場比賽.
(1)已確定甲同學打第一場比賽,再從其余3名同學中隨機選取1名,恰好選中乙同學的概率是多少?;
(2)隨機選取2名同學,求其中有乙同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高22米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F(xiàn),C在一條直線上).

(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈ ,cos22°≈ ,tan22≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.

(1)求證:AE=BG
(2)將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)α(0°<α≤360°)如圖2所示,判斷(1)中的結(jié)論是否仍然成立?如果仍成立,請給予證明;如果不成立,請說明理由;
(3)若BC=DE=4,當旋轉(zhuǎn)角α為多少度時,AE取得最大值?直接寫出AE取得最大值時α的度數(shù),并利用備用圖畫出這時的正方形DEFG,最后求出這時AF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊共同承擔一項筑路任務,甲隊單獨施工完成此項任務比乙隊單獨施工完成此項任務多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務需要多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4)、B(3,﹣2)、C(6,﹣3).
(1)①畫出△ABC關于x軸對稱的△A1B1C1;
②以M點為位似中心,在網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2:1.
(2)直接寫出C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在已知的△ABC中,按以下步驟作圖: ①分別以B,C為圓心,以大于 BC的長為半徑作弧,兩弧相交于兩點M,N;
②作直線MN交AB于點D,連接CD.
若CD=AC,∠B=25°,則∠ACB的度數(shù)為(

A.90°
B.95°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調(diào)查了若干名學生,根據(jù)調(diào)查數(shù)據(jù)進行整理,繪制了如下的不完整統(tǒng)計圖.
請你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了名學生,其中最喜愛體育的有人;
(2)在扇形統(tǒng)計圖中,最喜愛體育的對應扇形的圓心角大小是
(3)小李和小張在新聞、體育、動畫三類電視節(jié)目中分別有一類是自己最喜愛的節(jié)目,請用樹狀圖或列表法求兩人恰好最喜愛同一類節(jié)目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為9,將正方形折疊,使D點落在BC邊上的點E處,折痕為GH.若BE:EC=2:1,則線段CH的長是

查看答案和解析>>

同步練習冊答案