【題目】如圖,在△BAC中,∠B∠C的平分線相交于點(diǎn)F,過點(diǎn)FDE∥BCAB于點(diǎn)D,交AC于點(diǎn)E,若BD=5,CE=4,則線段DE的長(zhǎng)為( 。

A. 9 B. 6 C. 5 D. 4

【答案】A

【解析】

根據(jù)ABC中,ABCACB的平分線相交于點(diǎn)F.求證DBF=∠FBC,∠ECF=∠BCF,再利用兩直線平行內(nèi)錯(cuò)角相等,求證出DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代換即可求出線段DE的長(zhǎng).

∵∠ABCACB的平分線相交于點(diǎn)F

∴∠DBF=∠FBC,∠ECF=∠BCF,

DEBC,交AB于點(diǎn)D,交AC于點(diǎn)E,

∴∠DFB=∠DBF,∠CFE=∠ECF,

BD=DF=5,FE=CE=4,

DE=DF+EF=5+4=9.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1y2x+1、直線l2y=﹣x+7,直線l1l2分別交x軸于B、C兩點(diǎn),l1、l2相交于點(diǎn)A

1)求A、BC三點(diǎn)坐標(biāo);

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是線段AB上任一點(diǎn),AB=12 cm,C、D兩點(diǎn)分別從P、B同時(shí)向A點(diǎn)運(yùn)動(dòng),且C點(diǎn)的運(yùn)動(dòng)速度為2 cm/s,D點(diǎn)的運(yùn)動(dòng)速度為3 cm/s,運(yùn)動(dòng)的時(shí)間為t s.

(1)若AP=8 cm.

①運(yùn)動(dòng)1 s后,求CD的長(zhǎng);

②當(dāng)D在線段PB運(yùn)動(dòng)上時(shí),試說明AC=2CD;

(2)如果t=2 s時(shí),CD=1 cm,試探索AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)打算找印刷公司設(shè)計(jì)一款新年賀卡并印刷.如圖1是甲印刷公司設(shè)計(jì)與印刷卡片計(jì)價(jià)方式的說明(包含設(shè)計(jì)費(fèi)與印刷費(fèi)),乙公司的收費(fèi)與印刷卡片數(shù)量的關(guān)系如圖2所示.

1)分別寫出甲乙兩公司的收費(fèi)y(元)與印刷數(shù)量x之間的關(guān)系式.

2)如果你是小強(qiáng),你會(huì)選擇哪家公司?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中有一點(diǎn).

(1)點(diǎn)My軸的距離為1時(shí),M的坐標(biāo)?

(2)點(diǎn)MN//x軸時(shí),M的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司的每位“快遞小哥”日收入與每日的派送量成一次函數(shù)關(guān)系,如圖所示.

(1)求每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關(guān)系式;
(2)已知某“快遞小哥”的日收入不少于110元,則他至少要派送多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句:有一邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等;一般三角形具有的性質(zhì),直角三角形都具有;有兩邊相等的兩直角三角形全等;兩直角三角形的斜邊為5cm,一條直角邊都為3cm,則這兩個(gè)直角三角形必全等.其中正確的有________個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點(diǎn)為圓心,1為半徑的圓分別交x,y軸的正半軸于點(diǎn)A,B.

(1)如圖一,動(dòng)點(diǎn)P從點(diǎn)A處出發(fā),沿x軸向右勻速運(yùn)動(dòng),與此同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B處出發(fā),沿圓周按順時(shí)針方向勻速運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度比點(diǎn)P的運(yùn)動(dòng)速度慢,經(jīng)過1秒后點(diǎn)P運(yùn)動(dòng)到點(diǎn)(2,0),此時(shí)PQ恰好是⊙O的切線,連接OQ.求∠QOP的大小;
(2)若點(diǎn)Q按照(1)中的方向和速度繼續(xù)運(yùn)動(dòng),點(diǎn)P停留在點(diǎn)(2,0)處不動(dòng),求點(diǎn)Q再經(jīng)過5秒后直線PQ被⊙O截得的弦長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張大小相同的長(zhǎng)方形卡片(如圖①)按圖②、圖③兩種放法放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)比寬多6)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖②中陰影部分的周長(zhǎng)為C2,圖③中陰影部分的周長(zhǎng)為C3,則C2-C3=______

查看答案和解析>>

同步練習(xí)冊(cè)答案