如果a=數(shù)學(xué)公式,試求數(shù)學(xué)公式-數(shù)學(xué)公式的值.

解:a==-2,
-
=-2
=4-2
=2.
分析:求出a=-2,代入后化成最簡(jiǎn)二次根式或整式,再合并即可.
點(diǎn)評(píng):本題考查了二次根式的性質(zhì)、立方根、二次根式的加減法等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生①能否正確求出a的值,②求出=4,不是-4,=|a|=2,不是-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點(diǎn)D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過點(diǎn)P作PE⊥y軸,垂足為E,連接BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省模擬題 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+2x+c與y鈾交于點(diǎn)D(0,3)。
(1)直接寫出c的值。
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),頂點(diǎn)為C點(diǎn),求直線BC的解析式。
(3)已知點(diǎn)P是直線BC上運(yùn)動(dòng)時(shí)的一個(gè)動(dòng)點(diǎn)。    
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過點(diǎn)P作PE⊥y軸,垂足為 E,連接BE。設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為S,求S與x之間的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;    
②試探索:在直線BC上是否存在點(diǎn)P,使得以點(diǎn)P為圓心、r為半徑的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn) C為圓心、1為半徑的⊙C外切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由。
[提示:二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(浙江金華卷)數(shù)學(xué) 題型:解答題

(本題10分)在平面直角坐標(biāo)系中,如圖1,將個(gè)邊長(zhǎng)為1的正方形并排組成矩形OABC,相鄰兩邊OAOC分別落在軸和軸的正半軸上, 設(shè)拋物
<0)過矩形頂點(diǎn)B、C.
(1)當(dāng)n=1時(shí),如果=-1,試求b的值;
(2)當(dāng)n=2時(shí),如圖2,在矩形OABC上方作一邊長(zhǎng)為1的正方形EFMN,使EF在線段CB上,如果M,N兩點(diǎn)也在拋物線上,求出此時(shí)拋物線的解析式;
(3)將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使得點(diǎn)B落到軸的正半軸上,如果該拋物線同時(shí)經(jīng)過原點(diǎn)O.①試求當(dāng)n=3時(shí)a的值;
②直接寫出關(guān)于的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年5月中考數(shù)學(xué)模擬試卷(55)(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點(diǎn)D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過點(diǎn)P作PE⊥y軸,垂足為E,連接BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省泉州市南安市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點(diǎn)D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過點(diǎn)P作PE⊥y軸,垂足為E,連接BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案