【題目】寶安區(qū)的某商場(chǎng)經(jīng)市場(chǎng)調(diào)查,預(yù)計(jì)一款夏季童裝能獲得市場(chǎng)青睞,便花費(fèi) 15000 元購(gòu)進(jìn)了一批此款童裝,上市后很快售罄.該店決定繼續(xù)進(jìn)貨,由于第二批進(jìn)貨數(shù)量是第一批進(jìn)貨數(shù)量的 2 倍,因此單價(jià)便宜了 10 元,購(gòu)進(jìn)第二批童裝一共花費(fèi)了 27000 元.

(1)該店所購(gòu)進(jìn)的第一批童裝的單價(jià)是多少元?

(2)兩批童裝按相同標(biāo)價(jià)出售,經(jīng)理根據(jù)市場(chǎng)情況,決定對(duì)第二批剩余的 100 件打七折銷(xiāo)售.若兩批童裝全部售完后,利潤(rùn)不低于 30%,那么每件童裝標(biāo)價(jià)至少是多少元?

【答案】(1)該店所購(gòu)進(jìn)的第一批童裝的單價(jià)是 100 /;(2)每件童裝標(biāo)價(jià)至少為 130 元.

【解析】

1)設(shè)該店所購(gòu)進(jìn)的第一批童裝的單價(jià)是 x 元/件,則該店所購(gòu)進(jìn)的第二批童裝的單價(jià)是(x﹣10)元/件,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合于第二批進(jìn)貨數(shù)量是第一批進(jìn)貨數(shù)量的 2 倍,即可得出關(guān)于 x 的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;

(2)根據(jù)數(shù)量=總價(jià)÷單價(jià)可求出第一批購(gòu)進(jìn)的數(shù)量,用其×2 可得出第二批購(gòu)進(jìn)的數(shù)量,設(shè)每件童裝標(biāo)價(jià)為 y 元,根據(jù)利潤(rùn)=銷(xiāo)售收入﹣成本,即可得出關(guān)于 y 的一元一次不等式,解之取其中的最小值即可得出結(jié)論.

(1)設(shè)該店所購(gòu)進(jìn)的第一批童裝的單價(jià)是 x 元/件,則該店所購(gòu)進(jìn)的第二批童裝的單價(jià)是(x﹣10)元/件,

根據(jù)題意得:,

解得:x=100,

經(jīng)檢驗(yàn),x=100 是原分式方程的解且符合題意. 答:該店所購(gòu)進(jìn)的第一批童裝的單價(jià)是 100 元/件.

(2)第一批購(gòu)進(jìn)的數(shù)量為 15000÷100=150(件),第二批購(gòu)進(jìn)的數(shù)量為 150×2=300(件).

設(shè)每件童裝標(biāo)價(jià)為 y 元,

根據(jù)題意得:(150+300﹣100)y+100×0.7y﹣15000﹣27000≥(15000+27000)×30%,

解得:y≥130.

答:每件童裝標(biāo)價(jià)至少為 130 元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)騎車(chē)從家到學(xué)校要經(jīng)過(guò)一段先上坡后下坡的路,在這段路上小強(qiáng)騎車(chē)的距離s(千米)與騎車(chē)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖中信息回答下列問(wèn)題:

(1)小強(qiáng)去學(xué)校時(shí)下坡路長(zhǎng) 千米;

(2)小強(qiáng)下坡的速度為 千米/分鐘;

(3)若小強(qiáng)回家時(shí)按原路返回,且上坡的速度不變,下坡的速度也不變,那么回家騎車(chē)走這段路的時(shí)間是 分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD中,E、F分別是AB、CB上的點(diǎn),且AECF,CEAFM,∠CMF45°,則的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù) yax+bx+ca≠0)的圖象如圖所示A(﹣ 1,3)是拋物線的頂點(diǎn),則以下結(jié)論中正確的是(

A. a<0,b>0,c>0

B. 2a+b=0

C. 當(dāng) x<0 時(shí)y x 的增大而減小

D. ax2+bx+c﹣3≤0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,BAC=90°,分別以 AC BC 為邊向外作正方形 ACFG 和正方形 BCDE,過(guò)點(diǎn) D FC 的延長(zhǎng)線的垂線,垂足為點(diǎn) H

(1)求證:ABC≌△HDC

(2)連接 FD, AC 的延長(zhǎng)線于點(diǎn) M AG ,tanABC,FCM 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C=90°,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以O(shè)A為半徑的⊙O與邊BC交于點(diǎn)D,與邊AC交于點(diǎn)E,連接AD,且AD平分∠BAC.

(1)求證:BC是⊙O的切線;

(2)若∠BAC=60°,OA=1,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,延長(zhǎng)于點(diǎn),延長(zhǎng)于點(diǎn),過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn),則=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并按要求解答.

(模型介紹)

如圖①,C是線段A、B上一點(diǎn)E、FAB同側(cè),且∠A=B=ECF=90°,看上去像一個(gè)“K“,我們稱(chēng)圖①為“K”型圖.

(性質(zhì)探究)

性質(zhì)1:如圖①,若EC=FC,ACE≌△BFC

性質(zhì)2:如圖①,若EC≠FC,ACE~BFC且相似比不為1.

(模型應(yīng)用)

應(yīng)用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.

應(yīng)用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AHBC,連接EF.交AH的反向延長(zhǎng)線于點(diǎn)K,證明:KEF中點(diǎn).

(1)請(qǐng)你完成性質(zhì)1的證明過(guò)程;

(2)請(qǐng)分別解答應(yīng)用1,應(yīng)用2提出的問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,過(guò)點(diǎn)C的切線交BA的延長(zhǎng)線于點(diǎn)D,CD=CB,CEAB交半圓于點(diǎn)E.

(1)求∠D的度數(shù);

(2)求證:以點(diǎn)C,O,B,E為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案