(2012•哈爾濱)如圖,四邊形ABCD是矩形,點(diǎn)E在線段CB的延長線上,連接DE交AB于點(diǎn)F,∠AED=2∠CED,點(diǎn)G是DF的中點(diǎn),若BE=1,AG=4,則AB的長為
15
15
分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,然后根據(jù)等邊對(duì)等角的性質(zhì)可得∠ADG=∠DAG,再結(jié)合兩直線平行,內(nèi)錯(cuò)角相等可得∠ADG=∠CED,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠AGE=2∠ADG,從而得到∠AED=∠AGE,再利用等角對(duì)等邊的性質(zhì)得到AE=AG,然后利用勾股定理列式計(jì)算即可得解.
解答:解:∵四邊形ABCD是矩形,點(diǎn)G是DF的中點(diǎn),
∴AG=DG,
∴∠ADG=∠DAG,
∵AD∥BC,
∴∠ADG=∠CED,
∴∠AGE=∠ADG+∠DAG=2∠CED,
∵∠AED=2∠CED,
∴∠AED=∠AGE,
∴AE=AG=4,
在Rt△ABE中,AB=
AE2-BE2
=
42-12
=
15

故答案為:
15
點(diǎn)評(píng):本題考查了矩形的性質(zhì),等邊對(duì)等角的性質(zhì),等角對(duì)等邊的性質(zhì),以及勾股定理的應(yīng)用,求出AE=AG是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)一個(gè)圓錐的母線長為4,側(cè)面積為8π,則這個(gè)圓錐的底面圓的半徑是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)下列圖形是中心對(duì)稱圖形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)如圖所示的幾何體是由六個(gè)小正方體組合而成的,它的左視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•哈爾濱)小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40cm,這個(gè)三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案