在矩形ABCD中,AB=4,BC=10,點(diǎn)M在BC上。
 
小題1:(1)若BM=3時,求點(diǎn)D到直線AM的距離;
小題2:(2)若AM⊥DM,求BM的長。


小題1:解:(1)如圖(2),過點(diǎn)D作DH⊥AM垂足為H,
∵AB=4,BM=3,∴AM=5。
∴sin∠DAM= sin∠AMB==,
∴ ------(5分)
小題2:(2)如圖(3)∵AM⊥DM,
∴∠AMB+∠DMC=90°,
∵∠AMB+∠BAM=90°
∴∠BAM=∠DMC--------(2分)
∴△ABM∽△DMC,
,
,解得,。------(3分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線軸交于點(diǎn)D(0,3).

小題1:直接寫出的值;
小題2:若拋物線與軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
小題3:已知點(diǎn)P是直線BC上一個動點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動時(點(diǎn)P不與B、C重合),過點(diǎn)P作PE⊥軸,垂足為E,連結(jié)BE.設(shè)點(diǎn)P的坐標(biāo)為(),△PBE的面積為,求的函數(shù)關(guān)系式,寫出自變量的取值范圍,并求出的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為的⊙P,既與拋物線的對稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC∽△A′B′C′,AB=3,A′B′=4.若SABC=18,則SABC的值為( 。
A.B.C.24D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題8分)如圖,AB為⊙O的直徑,割線PCD交⊙O于C、D, .

小題1:(1)求證:PA是⊙O的切線;
小題2:(2)若PA=6,CD=3PC,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

、(本題8分)如圖,在△ABC中,DE//BC,AD:DB="3:2 "

小題1: (1)求的值小題2: (2)求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)如圖:是7×7的正方形網(wǎng)格,請?jiān)谒o網(wǎng)格中按下列要求操作:

小題1:(1)請?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-4,2),B點(diǎn)坐標(biāo)為(-2,4).
小題2:(2)在第二象限內(nèi)格點(diǎn)上找一點(diǎn)C,使C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點(diǎn)坐標(biāo)是_________;△ABC周長是____________.(結(jié)果保留根號)
小題3:(3)畫出三角形ABC以O(shè)為位似中心,相似比為的位似圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)小題1:(1)學(xué)習(xí)《測量建筑物的高度》后,小明帶著卷尺、標(biāo)桿,利用太陽光去測量旗桿的高度.
參考示意圖1,他的測量方案如下:
第一步,測量數(shù)據(jù).測出CD=1.6米,CF=1.2米, AE=9米.
第二步,計(jì)算.
請你依據(jù)小明的測量方案計(jì)算出旗桿的高度.

小題2:(2) 如圖2,校園內(nèi)旗桿周圍有護(hù)欄,下面有底座.現(xiàn)在有卷尺、
標(biāo) 桿、平面鏡、測角儀等
工具,請你選擇出必須的工具,設(shè)計(jì)一個測量方案,以求出旗桿頂端到地面的距離.
要求:在備用圖中畫出示意圖,說明需要測量的數(shù)據(jù).(注意不能到達(dá)底部點(diǎn)N對完成測量任務(wù)的影響,不需計(jì)算)
你選擇出的必須工具是                   ;
需要測量的數(shù)據(jù)是                                        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,過點(diǎn)A作GE∥BC,角平分線BD、CF相交于點(diǎn)H,它們的延長線分別交GE于點(diǎn)E、G.試在圖中找出3對全等三角形,并對其中一對全等三角形給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,
且AD⊥CD,E為BC中點(diǎn),則DE=(       )

A  3cm           B  5cm           C  2.5cm    D 1.5cm

查看答案和解析>>

同步練習(xí)冊答案