【題目】如圖①,點A表示小明家,點B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達C處時發(fā)現(xiàn)數(shù)學(xué)書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時小明步行去學(xué)校,到達學(xué)校后等待媽媽.假設(shè)拿書時間忽略不計,小明和媽媽在整個運動過程中分別保持勻速.媽媽從C處出發(fā)x分鐘時離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1與x的函數(shù)圖像;折線O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為_________m/min,圖②中a的值為__________.
(2)設(shè)媽媽從C處出發(fā)x分鐘時媽媽與小明之間的距離為y米.
①寫出小明媽媽在騎車由C處返回到A處的過程中,y與x的函數(shù)表達式及x的取值范圍;
②在圖③中畫出整個過程中y與x的函數(shù)圖像.(要求標(biāo)出關(guān)鍵點的坐標(biāo))
【答案】 60 33
【解析】試題分析:
(1)由圖可知,①C處距離學(xué)校1800米,小明從C處到學(xué)校用時30分鐘,由此即可求得小明的速度為1800÷30=60(米/分鐘);②C處距離小明家2400米,小明媽媽從C處到家再到C處用時24分鐘,由此可得小明媽媽的速度為2400×2÷24=200(米/分鐘),由此可得a=(2400×2+1800)÷200=33(分鐘);
(2)①由(1)可知小明媽媽的速度為200米/分鐘,小明的速度為60米/分鐘可得y=260x();②由題意可知,y與x的函數(shù)關(guān)系分為三段:第一段,第二段,第三段,結(jié)合題中已知條件可得當(dāng)時,y=0;當(dāng)x=12時,y=3120;當(dāng)x=30時,y=600;當(dāng)x=33時,y=0;由此即可畫出整個過程中y與x的函數(shù)圖象了.
試題解析:
(1)①由圖1和圖2中的信息可知:C處距離學(xué)校1800米,小明由C處到學(xué)校用了30分鐘,
∴小明的速度=1800÷30=60(米/分鐘);
②由圖1和圖2中的信息可知: C處距離小明家2400米,小明媽媽從C處到家再到C處用時24分鐘,
∴小明媽媽的速度為2400×2÷24=200(米/分鐘),
∵C處距離學(xué)校1800米,
∴a=(2400×2+1800)÷200=33(分鐘);
(2)①由(1)可知小明媽媽的速度是:200 米/分鐘,小明的速度是60米/分鐘,
∵小明媽媽在騎車由C回到A的過程中,小明與媽媽背向而行,
∴y=260x, x的取值范圍是0≤x≤12.
②由題意可得,整個過程中,y與x的函數(shù)圖象如下圖所示:
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某消防隊在一居民樓前進行演習(xí),消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°和65°,點A距地面2.5米,點B距地面10.5米.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.
(1)當(dāng)∠BDA=115°時,∠EDC=______°,∠AED=______°;
(2)線段DC的長度為何值時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=90°,有一根長為10的木棒AB的兩個端點A、B分別在射線OM,ON上滑動,∠OAB的角平分線AD交OB于點D.
(1)如圖(1),若OA=6,則OB= ,OD= ;
(2)如圖(2),過點B作BE⊥AD,交AD的延長線于點E,連接OE,在AB滑動的過程中,線段OE,BE有何數(shù)量關(guān)系,并說明理由;
(3)若點P是∠MON內(nèi)部一點,在(1)的條件下,當(dāng)△ABP是以AB為斜邊的等腰直角三角形時,OP2= ;
(4)在AB滑動的過程中,△AOB面積的最大值為 .
·圖(1) 圖(2) 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( 。
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,一蔬菜經(jīng)營戶用180元錢從蔬菜批發(fā)市場批了西紅柿和豆角共40千克到菜市場去賣,西紅柿和豆角這天的批發(fā)價與零售價如下表所示:
品名 | 西紅柿 | 豆角 |
批發(fā)價(單位:元/千克) | 3.6 | 4.6 |
零售價(單位:元/千克) | 5.4 | 7.5 |
問:他當(dāng)天賣完這些西紅柿和豆角能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,點D在線段AB上,從點B出發(fā),以2cm/s的速度向終點A運動,設(shè)點D的運動時間為t秒。
(1)點D在運動t秒后,BD= cm(用含有t的式子表示)
(2)AB=cm,AB邊上的高為cm;
(3)點D在運動過程中,當(dāng)△BCD為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為打入國際市場,決定從、兩種產(chǎn)品中只選擇一種進行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)
項目 類別 | 年固定 成本 | 每件產(chǎn)品 成本 | 每件產(chǎn)品 銷售價 | 每年最多可 生產(chǎn)的件數(shù) |
產(chǎn)品 | ||||
產(chǎn)品 |
其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價格決定,預(yù)計.另外,年銷售件產(chǎn)品時需上交萬美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
寫出該廠分別投資生產(chǎn)、兩種產(chǎn)品的年利潤,與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系并指明其自變量取值范圍;
如何投資才可獲得最大年利潤?請你做出規(guī)劃.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com