【題目】已知△ABC,O 是△ABC 所在平面內(nèi)的一點(diǎn),連接 OB、OC,將∠ABO、∠ACO分別記為∠1、∠2.
(1)如圖(1),當(dāng)點(diǎn) O 在圖中所示的位置時(shí),∠1+∠2+∠A+∠O= ;
(2)如圖(2),當(dāng)點(diǎn) O 在△ABC 的內(nèi)部時(shí),∠1、∠2、∠A、∠OC四個(gè)角之間滿足怎樣 的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的結(jié)論并說(shuō)明理由;
(3)當(dāng)點(diǎn) O 在△ABC 所在平面內(nèi)運(yùn)動(dòng)時(shí)(點(diǎn) O 不在三邊所在的直線上),由于所處的位 置不同,∠1、∠2、∠A、∠OC四個(gè)角之間滿足的數(shù)量關(guān)系還存在著與(1)、(2) 中不同的結(jié)論,請(qǐng)?jiān)趫D(3)中畫(huà)出一種不同的示意圖,并直接寫(xiě)出相應(yīng)的結(jié)論.
【答案】(1)360°;(2)∠O=∠1+∠2+∠A;(3)∠A=∠2+∠O-∠1;
【解析】
(1)根據(jù)四邊形內(nèi)角和定理解答即可;
(2)連接OA,并延長(zhǎng)交BC于D點(diǎn),根據(jù)三角形內(nèi)角與外角的性質(zhì)解答即可;
(3)根據(jù)題意畫(huà)出圖形,再寫(xiě)出結(jié)論.
(1)如圖(1),當(dāng)點(diǎn)O與點(diǎn)A在直線BC的異側(cè)時(shí),
∵AB、OB、OC、AC四條線段正好構(gòu)成四邊形,
∴∠1+∠2+∠A+∠O=360;
(2)連接OA,并延長(zhǎng)交BC于D點(diǎn),
∵∠BOD是△AOB的外角,
∴∠OAB+∠1=∠BOD,
∵∠COD是△AOB的外角,
∴∠OAC+∠2=∠COD,
∴∠OAB+∠1+∠OAC+∠2=∠COD+∠BOD,
即∠1+∠2+∠A=∠O.
(3)如圖所示,
∠A=∠2+∠O∠1.
在△ABD中,∠4=180∠A∠1,
∵∠3=∠4,
∴∠3=180∠A∠1,
∴∠3+∠2+∠O=180,
∴180∠A∠1+∠2+∠O=180,
整理得,∠A=∠2+∠O∠1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,的頂點(diǎn)均在格點(diǎn)上.(畫(huà)圖要求:先用鉛筆畫(huà)圖,然后用黑色水筆描畫(huà))
(1)①畫(huà)出繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)后的;
②連結(jié),請(qǐng)判斷是怎樣的三角形,并簡(jiǎn)要說(shuō)明理由.
(2)畫(huà)出,使和關(guān)于點(diǎn)成中心對(duì)稱;
(3)請(qǐng)指出如何平移,使得和能拼成一個(gè)長(zhǎng)方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD中,點(diǎn)E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)E落在直線BC上的點(diǎn)F處,則F、C兩點(diǎn)的距離為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中學(xué)生帶手機(jī)上學(xué)的現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注.某市記者隨機(jī)調(diào)查了一些家長(zhǎng)對(duì)這種現(xiàn)象的態(tài)度(A:無(wú)所謂;B:反對(duì);C:贊成),并將調(diào)査結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在圖①中,C部分所占扇形的圓心角度數(shù)為_(kāi)__________°;選擇圖①進(jìn)行統(tǒng)計(jì)的優(yōu)點(diǎn)是___________;
(2)將圖②補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,可估計(jì)該市50000名中學(xué)生家長(zhǎng)中有_________名家長(zhǎng)持贊成態(tài)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對(duì)折,使它落在斜邊AB上,且與AE重合,則CD等于( )
A. 3cmB. 4cmC. 5cmD. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形紙片ABCD折疊,使點(diǎn)D落在邊AB上的D'處,點(diǎn)C落在C'處,若∠AD'M=50°,則∠MNC'的度數(shù)為( )
A. 100°B. 110°C. 120°D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時(shí),其函數(shù)值等于p,則稱p為這個(gè)函數(shù)的不變值.在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.例如:下圖中的函數(shù)有0,1兩個(gè)不變值,其不變長(zhǎng)度q等于1.
(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒(méi)有不變值?如果有,直接寫(xiě)出其不變長(zhǎng)度;
(2)函數(shù)y=2x2-bx.
①若其不變長(zhǎng)度為零,求b的值;
②若1≤b≤3,求其不變長(zhǎng)度q的取值范圍;
(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長(zhǎng)度q滿足0≤q≤3,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AD=2,E是AB的中點(diǎn),將△BEC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)E落在CB的延長(zhǎng)線上點(diǎn)F處,點(diǎn)C落在點(diǎn)A處.再將線段AF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得線段FG,連結(jié)EF、CG.
(1)求證:EF∥CG;
(2)求點(diǎn)C、點(diǎn)A在旋轉(zhuǎn)過(guò)程中形成的、與線段CG所圍成的陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com