【題目】研究幾何圖形,我們往往先給出這類(lèi)圖形的定義,再研究它的性質(zhì)和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;

(1)小文認(rèn)為菱形是特殊的“箏形”,你認(rèn)為他的判斷正確嗎?
(2)小文根據(jù)學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),通過(guò)觀(guān)察、實(shí)驗(yàn)、歸納、類(lèi)比、猜想、證明等方法,對(duì)AB≠BC的“箏形”的性質(zhì)和判定方法進(jìn)行了探究.下面是小文探究的過(guò)程,請(qǐng)補(bǔ)充完成:
①他首先發(fā)現(xiàn)了這類(lèi)“箏形”有一組對(duì)角相等,并進(jìn)行了證明,請(qǐng)你完成小文的證明過(guò)程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類(lèi)“箏形”角的性質(zhì),他進(jìn)一步探究發(fā)現(xiàn)這類(lèi)“箏形”還具有其它性質(zhì),請(qǐng)?jiān)賹?xiě)出這類(lèi)“箏形”的一條性質(zhì)(除“箏形”的定義外);
③繼性質(zhì)探究后,小文探究了這類(lèi)“箏形”的判定方法,寫(xiě)出這類(lèi)“箏形”的一條判定方法(除“箏形”的定義外):

【答案】
(1)

證明:正確,

∵菱形四邊相等,

∴菱形是特殊的“箏形”


(2)連結(jié)BD,在△ABD和△BCD中,
∵AB=AD,BC=CD,
∴∠ABD=∠ADB,∠DBC=∠BDC
∴∠ABC=∠ADC;“箏形”有一條對(duì)角線(xiàn)平分一組對(duì)角;有一條對(duì)角線(xiàn)垂直平分另一條對(duì)角線(xiàn)的四邊形是箏形
【解析】證明:(2)①連結(jié)BD,在△ABD和△BCD中,
∵AB=AD,BC=CD,
∴∠ABD=∠ADB,∠DBC=∠BDC
∴∠ABC=∠ADC;
②“箏形”有一條對(duì)角線(xiàn)平分一組對(duì)角(答案不唯一),
連接AC,BD,
∵AB=AD,
∴A在BD的垂直平分線(xiàn)上,
∵BC=DC,
∴C在BD的垂直平分線(xiàn)上,
∴AC是BD的垂直平分線(xiàn),
∵AB=AD,BC=CD,
∴AC平分∠BAC和∠BCD,
∴“箏形”有一條對(duì)角線(xiàn)平分一組對(duì)角,
所以答案是:“箏形”有一條對(duì)角線(xiàn)平分一組對(duì)角;
③有一條對(duì)角線(xiàn)垂直平分另一條對(duì)角線(xiàn)的四邊形是箏形(答案不唯一).
所以答案是:有一條對(duì)角線(xiàn)垂直平分另一條對(duì)角線(xiàn)的四邊形是箏形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,EAD延長(zhǎng)線(xiàn)上一點(diǎn),BEAC于點(diǎn)F , 交DC于點(diǎn)G , 則下列結(jié)論中錯(cuò)誤的是( 。
A.△ABE∽△DGE
B.△CGB∽△DGE
C.△BCF∽△EAF
D.△ACD∽△GCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達(dá)式;
(2)點(diǎn)C 是坐標(biāo)平面內(nèi)一點(diǎn),BC∥x 軸,AD⊥BC 交直線(xiàn)BC 于點(diǎn)D,連接AC.若AC= CD,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在五邊形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD邊的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā),按A→B→C→M的順序運(yùn)動(dòng).設(shè)點(diǎn)P經(jīng)過(guò)的路程x為自變量,△APM的面積為y,則函數(shù)y的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)F.
求證:BF=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式 ≥1,并把它的解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y1=mx2+(m﹣3)x﹣3(m>0)與x軸交于A、B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,OB=OC.

(1)求這條拋物線(xiàn)的表達(dá)式;
(2)將拋物線(xiàn)y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,若點(diǎn)C在直線(xiàn)y2=﹣3x+t上,直線(xiàn)y2向下平移n個(gè)單位,當(dāng)平移后的直線(xiàn)與P有公共點(diǎn)時(shí),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在線(xiàn)段AB上找一點(diǎn)C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BCAB=AC2 , 那么稱(chēng)線(xiàn)段AB被點(diǎn)C黃金分割.為了增加美感,黃金分割經(jīng)常被應(yīng)用在繪畫(huà)、雕塑、音樂(lè)、建筑等藝術(shù)領(lǐng)域.如圖2,在我國(guó)古代紫禁城的中軸線(xiàn)上,太和門(mén)位于太和殿與內(nèi)金水橋之間靠近內(nèi)金水橋的一側(cè),三個(gè)建筑的位置關(guān)系滿(mǎn)足黃金分割.已知太和殿到內(nèi)金水橋的距離約為100丈,求太和門(mén)到太和殿之間的距離( 的近似值取2.2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藍(lán)莓種植生產(chǎn)基地產(chǎn)銷(xiāo)兩旺,采摘的藍(lán)莓部分加工銷(xiāo)售,部分直接銷(xiāo)售,且當(dāng)天都能銷(xiāo)售完,直接銷(xiāo)售是40元/斤,加工銷(xiāo)售是130元/斤(不計(jì)損耗).已知基地雇傭20名工人,每名工人只能參與采摘和加工中的一項(xiàng)工作,每人每天可以采摘70斤或加工35斤,設(shè)安排x名工人采摘藍(lán)莓,剩下的工人加工藍(lán)莓.
(1)若基地一天的總銷(xiāo)售收入為y元,求y與x的函數(shù)關(guān)系式;
(2)試求如何分配工人,才能使一天的銷(xiāo)售收入最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案