【題目】如圖,AB是半圓的直徑,點O是圓心,點COA的中點,CDOA交半圓于點D,點E的中點,連接AE、OD,過點DDPAEBA的延長線于點P

1)求∠AOD的度數(shù);

2)求證:PD是半圓O的切線.

【答案】160°;(2)證明見解析.

【解析】試題分析:(1)根據(jù)CO與DO的數(shù)量關系,即可得出∠CDO的度數(shù),進而求出∠AOD的度數(shù);

(2)利用點E是的中點,進而求出∠EAB=30°,即可得出∠AFO=90°,即可得出答案.

試題解析:(1)∵AB是半圓的直徑,點O是圓心,點C是OA的中點,

∴2CO=DO,∠DCO=90°,

∴∠CDO=30°,

∴∠AOD=60°;

(2)如圖,連接OE,

∵點E是的中點,

,

∵由(1)得∠AOD=60°,

∴∠DOB=120°,

∴∠BOE=60°,

∴∠EAB=30°,

∴∠AFO=90°,

∵DP∥AE,

∴PD⊥OD,

∴直線PD為⊙O的切線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列是小朋友用火柴棒拼出的一組圖形:

仔細觀察,找出規(guī)律,解答下列各題:

(1)第四個圖中共有   根火柴棒,第六個圖中共有   根火柴棒;

(2)按照這樣的規(guī)律,第n個圖形中共有   根火柴棒(用含n的代數(shù)式表示);

(3)按照這樣的規(guī)律,第20個圖形中共有多少根火柴棒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條折線數(shù)軸.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢復原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢復原速.設運動的時間為t秒.

問:(1)動點P從點A運動至C點需要多少時間?

(2)P、Q兩點相遇時,求出相遇點M所對應的數(shù)是多少;

(3)求當t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l上有AB兩點,AB18cm,點O是線段AB上的一點,OA2OB

1OA cm , OB cm;

2)若點C是直線AB上一點,且滿足ACCO+CB,求CO的長;

3)若動點PQ分別從A,B同時出發(fā),向右運動,點P的速度為2cm/s,點Q的速度為1cm/s.設運動時間為ts,當點P與點Q重合時,P,Q兩點停止運動.

①當t為何值時,2OP﹣OQ3;

②當點P經(jīng)過點O時,動點M從點O出發(fā),以4cm/s的速度也向右運動.當點M追上點Q后立即返回,以4cm/s的速度向點P運動,遇到點P后再立即返回,以4cm/s的速度向點Q運動,如此往返.當點P與點Q重合時,P,Q兩點停止運動.此時點M也停止運動.在此過程中,點M行駛的總路程是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】搶紅包2015年春節(jié)十分火爆的一項網(wǎng)絡活動,某企業(yè)有4000名職工,從中隨機抽取350人,按年齡分布和搶紅包所持態(tài)度情況進行調查,并將調查結果繪成了條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)這次調查中,如果職工年齡的中位數(shù)是整數(shù),那么這個中位數(shù)所在的年齡段是哪一段?

2)如果把對搶紅包所持態(tài)度中的經(jīng)常(搶紅包)偶爾(搶紅包)統(tǒng)稱為參與搶紅包,那么這次接受調查的職工中參與搶紅包的人數(shù)是多少?并估計該企業(yè)從不(搶紅包)的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1)(12014+2 3.14π0;

2)(2a+3b)(2a﹣3b+3ba2;

3)先化簡再求值xx+yx+y2+2xy,其中x=,y=25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班要從9名百米跑成績各不相同的同學中選4名參加4×100米接力賽,而這9名同學只知道自己的成績,要想讓他們知道自己是否入選,老師只需公布他們成績的( 。
A.平均數(shù)
B.中位數(shù)
C.眾數(shù)
D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠B,點E為AB邊的中點,∠DEC=∠A.有下列結論:①DE平分∠AEC;②CE平分∠DEB;③DE平分∠ADC;④EC平分∠BCD.其中正確的是_______________.(把所以正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算4×2n×8×2n的結果是( )

A. 32×2n B. 12×2n C. 12×22n D. 22n5

查看答案和解析>>

同步練習冊答案