【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點(diǎn),將Rt△ABC沿CD折疊,使B點(diǎn)落在AC邊上的B′處,則∠CDB′等于( )
A.40°
B.60°
C.70°
D.80°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某測(cè)量員測(cè)量公園內(nèi)一棵樹DE的高度,他們?cè)谶@棵樹左側(cè)一斜坡上端點(diǎn)A處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺(tái)階AC的坡度為1: (即AB:BC=1: ),且B、C、E三點(diǎn)在同一條直線上.
(1)求斜坡AC的長;
(2)請(qǐng)根據(jù)以上條件求出樹DE的高度(側(cè)傾器的高度忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,出租車是人們出行的一種便利交通工具,折線ABC是在我市乘出租車所付車費(fèi)y(元)與行車?yán)锍?/span>x(km)之間的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,當(dāng)x≥3時(shí)y為x的一次函數(shù),請(qǐng)寫出函數(shù)關(guān)系式;
(2)某人乘坐13km,應(yīng)付多少錢?
(3)若某人付車費(fèi)42元,出租車行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長為( )
A. cm
B. cm
C. cm
D.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明發(fā)現(xiàn),過點(diǎn)E作EF∥DC,交BC延長線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).
請(qǐng)回答:BC+DE的值為________
參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點(diǎn)G,AC=BF=DF,求∠AGF的度數(shù)________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與⊙相切于點(diǎn)D,過圓心O作EF∥l交⊙O于E、F兩點(diǎn),點(diǎn)A是⊙O上一點(diǎn),連接AE,AF,并分別延長交直線于B、C兩點(diǎn);若⊙的半徑R=5,BD=12,則∠ACB的正切值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,長方形 ABCD 中,AB=3cm,BC=6cm,P 為矩形 ABCD 上的動(dòng)點(diǎn),動(dòng)點(diǎn) P 從 A 出發(fā),沿著 A-B-C-D 運(yùn)動(dòng)到 D 點(diǎn)停止,速度為 1cm/s,設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 x 秒,△APD 的面積為 ycm.
(1)填空:①當(dāng) x=6 時(shí),對(duì)應(yīng) y 的值為________;9≤x<12 時(shí),y 與 x 之間的關(guān)系式為_____;
(2)當(dāng) y=3 時(shí),求 x 的值;
(3)當(dāng) P 在線段 BC 上運(yùn)動(dòng)時(shí),是否存在點(diǎn) P 使得△APD 的周長最。咳舸嬖,求出此時(shí)∠APD 的度數(shù);若不存在,請(qǐng)說明理由.
圖1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點(diǎn),AC與DE交于P點(diǎn),以直線BC為x軸,點(diǎn)E為原點(diǎn)建立直角坐標(biāo)系.
(1)求△ABC與△DEF的頂點(diǎn)坐標(biāo);
(2)判斷△PEC的形狀;
(3)求△PEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線段AB上時(shí),求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com