【題目】如圖1所示,在正方形ABCD和正方形中,,連結(jié)

1)問題發(fā)現(xiàn):_________;

2)拓展探究:將正方形繞點A逆時針旋轉(zhuǎn),記旋轉(zhuǎn)角為,連結(jié),試判斷:當(dāng)時,的值有無變化?請僅就圖2中的情形給出你的證明;

3)問題解決:請直接寫出在旋轉(zhuǎn)過程中,當(dāng)三點共線時的長.

【答案】(1);(2)無變化,理由見解析;(3的長為

【解析】

1)延長BC于點E到等腰直角三角形,根據(jù)兩直角邊相等可得出結(jié)果

2 先根據(jù)兩個等腰直角三角形相似得出,根據(jù)這個條件可以得到∽△,就可以得出結(jié)論。

(3)共線分兩種情況,根據(jù)旋轉(zhuǎn)角度的不同進(jìn)行分類討論。

1

提示:延長BC于點E,如圖3所示.

,為等腰直角三角形

2)無變化;

理由如下:連結(jié)AC、,如圖4所示.

∵△ABC和△均為等腰直角三角形

∽△

∴當(dāng)360°時,的值無變化;

3的長為

提示:分為兩種情況:

①如圖5所示,連結(jié)AC

Rt中,由勾股定理得:

②如圖6所示,

此時

綜上所述,的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,頂點坐標(biāo)且開口向下,則下列結(jié)論:①拋物線經(jīng)過點;②;③關(guān)于的方程有兩個不相等的實數(shù)根;④對于任意實數(shù),總成立。其中結(jié)論正確的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,ABC=90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)

①作線段AC的垂直平分線l,交AC于點O;

②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;

③連接DA、DC

(2)判斷四邊形ABCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,有下列結(jié)論:①abc0;②2a+b0;③若m為任意實數(shù),則a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,則x1+x22.其中,正確結(jié)論的個數(shù)為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(0,0),B(20),AP1B是等腰直角三角形,且∠P190°,把AP1B繞點B順時針旋轉(zhuǎn)180°,得到BP2C,把BP2C繞點C順時針旋轉(zhuǎn)180°,得到CP3D,依此類推,得到的等腰直角三角形的直角頂點P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有兩枚質(zhì)地均勻的正方體骰子,每枚骰子的六個面上都分別標(biāo)有數(shù)字1、2、3、4、5、6.同時投擲這兩枚骰子,以朝上一面所標(biāo)的數(shù)字為擲得的結(jié)果,那么所得結(jié)果之和為9的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,.點出發(fā)沿運動,速度為每秒,點是點為對稱中心的對稱點,點運動的同時,點出發(fā)沿運動,速度為每秒,當(dāng)點到達(dá)頂點時,同時停止運動,設(shè)兩點運動時間為秒.

1)當(dāng)為何值時,?

2)設(shè)四邊形的面積為,求關(guān)于的函數(shù)關(guān)系式;

3)四邊形面積能否是面積的?若能,求出此時的值;若不能,請說明理由;

4)當(dāng)為何值時,為等腰三角形?(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,斜邊,將繞點順時針旋轉(zhuǎn),得到,連接.點從點出發(fā),沿方向勻速行動,速度為;同時,點從點出發(fā),沿方向勻速運動,速度為;當(dāng)一個點停止運動,另一個點也停讓運動.連接,于點.設(shè)運動時間為,解答下列問題:

1)當(dāng)為何值時,平分

2)設(shè)四邊形的面積為,求的函教關(guān)系式;

3)在運動過程中,當(dāng)時,求四邊形的面積;

4)在運動過程中,是否存在某一時刻,使點為線段的中點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案