等邊三角形的邊長(zhǎng)為m,則它的內(nèi)切圓的半徑等于   
【答案】分析:過(guò)O點(diǎn)作OD⊥AB,則AD=,因?yàn)椤螼AD=30°,根據(jù)直角三角形中的三角函數(shù)可得tan30°=求出DO即可.
解答:解:作OD⊥AB,
∵等邊三角形的邊長(zhǎng)為m,
∴AD=,
又∵∠DAO=BAC=60°×=30°,
∴tan30°===
∴DO=m.
故答案為:m.
點(diǎn)評(píng):本題考查了三角形的內(nèi)切圓與內(nèi)心的計(jì)算.解這類(lèi)題一般都利用過(guò)內(nèi)心向正三角形的一邊作垂線(xiàn),則正三角形的半徑、內(nèi)切圓半徑和正三角形邊長(zhǎng)的一半構(gòu)成一個(gè)直角三角形,解這個(gè)直角三角形,可求出相關(guān)邊長(zhǎng)或角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖一,等邊三角形MNP的邊長(zhǎng)為1,線(xiàn)段AB的長(zhǎng)為4,點(diǎn)M與A重合,點(diǎn)N在線(xiàn)段AB上.△MNP沿線(xiàn)段AB按A→B的方向滾動(dòng),直至△MNP中有一個(gè)點(diǎn)與點(diǎn)B重合為止,則點(diǎn)P經(jīng)過(guò)的路程為
 

(2)如圖三,正方形MNPQ的邊長(zhǎng)為1,正方形ABCD的邊長(zhǎng)為2,點(diǎn)M與點(diǎn)A重合,點(diǎn)N在線(xiàn)段AB上,點(diǎn)P在正方形內(nèi)部,正方形MNPQ沿正方形ABCD的邊按A→B→C→D→A→…的方向滾動(dòng),始終保持M,N,P,Q四點(diǎn)在正方形內(nèi)部或邊界上,直至正方形MNPQ回到初始位置為止,則點(diǎn)P經(jīng)過(guò)的最短路程為
 

精英家教網(wǎng)
(注:以△MNP為例,△MNP沿線(xiàn)段AB按A→B的方向滾動(dòng)指的是先以頂點(diǎn)N為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)P落在線(xiàn)段AB上時(shí),再以頂點(diǎn)P為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).多邊形沿直線(xiàn)滾動(dòng)與此類(lèi)似.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形的邊長(zhǎng)為2,則該三角形的面積為( 。
A、4
3
B、2
3
C、
3
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果等邊三角形的邊長(zhǎng)為a,那么它的內(nèi)切圓半徑為( 。
A、
a
2
B、
3
6
a
C、
3
3
a
D、
3
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形的邊長(zhǎng)為a,P是等邊三角形內(nèi)一點(diǎn),則P到三邊的距離之和是
3
2
a
3
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果等邊三角形的邊長(zhǎng)為4,那么連接各邊中點(diǎn)所成的三角形的周長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案