【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是

【答案】1.2
【解析】解:如圖,延長FP交AB于M,當(dāng)FP⊥AB時,點P到AB的距離最。
∵∠A=∠A,∠AMF=∠C=90°,
∴△AFM∽△ABC,
= ,
∵CF=2,AC=6,BC=8,
∴AF=4,AB= =10,
=
∴FM=3.2,
∵PF=CF=2,
∴PM=1.2
∴點P到邊AB距離的最小值是1.2.
故答案為1.2.
如圖,延長FP交AB于M,當(dāng)FP⊥AB時,點P到AB的距離最小,利用△AFM∽△ABC,得到 = 求出FM即可解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=60°,點B坐標(biāo)為(2,0),線段OA的長為6.將△AOB繞點O逆時針旋轉(zhuǎn)60°后,點A落在點C處,點B落在點D處.

(1)請在圖中畫出△COD;
(2)求點A旋轉(zhuǎn)過程中所經(jīng)過的路程(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠分發(fā)年終獎金,具體金額和人數(shù)如下表所示,則下列對這組數(shù)據(jù)的說法中不正確的是(

數(shù)

1

3

5

70

10

8

3

金額(元)

200000

150000

80000

15000

10000

8000

5000


A.極差是195000
B.中位數(shù)是15000
C.眾數(shù)是15000
D.平均數(shù)是15000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點,以點O為圓心,OB長為半徑作圓,恰好經(jīng)過點A,并與BC交于點D.
(1)判斷直線CA與⊙O的位置關(guān)系,并說明理由;
(2)若AB= ,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,乘積的最大值是   

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是   ;

(3)從中取出4張卡片.用學(xué)過的計算方法.使計算結(jié)果為24,請寫出這個運算式.(至少寫出兩個)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一個新的運算:a⊕b= ,則運算x⊕2的最小值為(
A.﹣3
B.﹣2
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點P到原點O的距離為ρ,OP與x軸正方向的交角為a,則用[ρ,a]表示點P的極坐標(biāo),例如:點P的坐標(biāo)為(1,1),則其極坐標(biāo)為[ ,45°].若點Q的極坐標(biāo)為[4,120°],則點Q的平面坐標(biāo)為(
A.(﹣2,﹣2
B.(2,﹣2
C.(﹣2 ,﹣2)
D.(﹣4,﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案