【題目】已知:將矩形繞點逆時針旋轉(zhuǎn)得到矩形.

1)如圖,當點上時,求證:

2)當旋轉(zhuǎn)角的度數(shù)為多少時,?

3)若,請直接寫出在旋轉(zhuǎn)過程中的面積的最大值.

【答案】(1)詳見解析;(2)當旋轉(zhuǎn)角的度數(shù)為時,;(3)

【解析】

1)由旋轉(zhuǎn)的性質(zhì)和矩形的性質(zhì),找出證明三角形全等的條件,根據(jù)全等三角形的性質(zhì)即可得到答案;

2)連接,由旋轉(zhuǎn)的性質(zhì)和矩形的性質(zhì),證明,根據(jù)全等三角形的性質(zhì)即可得到答案;

3)根據(jù)題意可知,當旋轉(zhuǎn)至AG//CD時,的面積的最大,畫出圖形,求出面積即可.

(1)證明:矩形是由矩形旋轉(zhuǎn)得到的,

,

,

,

;

2)解:連接

矩形是由矩形旋轉(zhuǎn)得到的,

,

,

,

,

,

,

;

,

,

當旋轉(zhuǎn)角的度數(shù)為時,;

3)解:如圖:當旋轉(zhuǎn)至AG//CD時,的面積的最大,

,,

;

的面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全民讀書月活動中,小明調(diào)查了班級里40名同學(xué)本學(xué)期計劃購買課外書的花費情況,并將結(jié)果繪制成如圖所示的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:(直接填寫結(jié)果)

1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ;

2)這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是

3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計本學(xué)期計劃購買課外書花費50元的學(xué)生有 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明社區(qū)為了調(diào)查居民對社區(qū)服務(wù)的滿意度,隨機抽取了社區(qū)部分居民進行問卷調(diào)查;用表示“很滿意”,表示“滿意”,表示“比較滿意”,表示“不滿意”,如圖是根據(jù)問卷調(diào)查統(tǒng)計資料繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次問卷調(diào)查共調(diào)查了多少個居民?

(2)求出調(diào)查結(jié)果為的人數(shù),并將直方圖中部分的圖形補充完整;

(3)如果該社區(qū)有居民5000人,請你估計對社區(qū)服務(wù)感到“不滿意”的居民約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB90°,BC2,∠A30°,點E,F分別是線段BC,AC的中點,連結(jié)EF

1)線段BEAF的位置關(guān)系是      

2)如圖2,當△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.

3)如圖3,當△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a180°),延長FCAB于點D,如果AD62,求旋轉(zhuǎn)角a的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,若AC=4,BC=3,AB=5,則△ABC的內(nèi)切圓半徑R=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①、圖②,方格紙中的每個小正方形的邊長均為1,小正方形的頂點稱為格點,圖①和圖②中的點A、點B都是格點.分別在圖①、圖②中畫出格點C,并滿足下面的條件:

1)在圖①中,使∠ABC90°.此時AC的長度是

2)在圖②中,使ABAC.此時ABC的邊AB上的高是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點,CF切半圓O于點C,BD⊥CF于為點D,BD與半圓O交于點E.

(1)求證:BC平分∠ABD.

(2)DC=8,BE=4,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,∠BAC50°∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).

(1)求拋物線的解析式;

(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.

是否同時存在點D和點P,使得APQ和CDO全等,若存在,求點D的坐標,若不存在,請說明理由;

∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.

查看答案和解析>>

同步練習(xí)冊答案