【題目】某商場有一種游戲,規(guī)則是:在一只裝有8個(gè)紅球和若干個(gè)白球(每個(gè)球除顏色外都相同)的不透明的箱子中,隨機(jī)摸出1個(gè)球,摸到紅球就可獲得一瓶飲料.工作人員統(tǒng)計(jì)了參加游戲的人數(shù)和獲得飲料的人數(shù)(見下表).

1)計(jì)算并完成表格;

參加游戲的人數(shù)

200

300

400

500

獲得飲料的人數(shù)

39

63

82

99

獲得飲料的頻率

2)估計(jì)獲得飲料的概率;

3)請(qǐng)你估計(jì)袋中白球的數(shù)量.

【答案】10.195,0.21,0.2050.198;20.2;3)估計(jì)袋中有32個(gè)白球.

【解析】

(1)用獲得飲料的人數(shù)除以參加游戲的人數(shù)即可得;

(2)根據(jù)(1)中的頻率進(jìn)行估計(jì)即可;

(3)利用估計(jì)的概率和概率公式進(jìn)行求解即可.

(1)39÷200=0.19563÷300=0.2182÷400=0.202,99÷500=0.198,

填表如下:

參加游戲的人數(shù)

200

300

400

500

獲得飲料的人數(shù)

39

63

82

99

獲得飲料的頻率

0.195

0.21

0.205

0.198

(2)觀察表格可知隨著參加人數(shù)的增加,獲得飲料的頻率逐漸穩(wěn)定在0.2附近,

所以估計(jì)獲得飲料的概率為0.2

(3)設(shè)袋中有白球x個(gè),

根據(jù)題意,得,

解這個(gè)方程,得x32,

經(jīng)檢驗(yàn),x32是所列方程的解,

答:估計(jì)袋中有32個(gè)白球.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB分別在射線OM、ON上運(yùn)動(dòng)(不與點(diǎn)O重合).

1)如圖1,若∠MON=90°,∠OBA、∠OAB的平分線交于點(diǎn)C,則∠ACB= °;
2)如圖2,若∠MON=n°,∠OBA、∠OAB的平分線交于點(diǎn)C,求∠ACB的度數(shù);
3)如圖2,若∠MON=n°,AOB的外角∠ABN、∠BAM的平分線交于點(diǎn)D,求∠ACB與∠ADB之間的數(shù)量關(guān)系,并求出∠ADB的度數(shù);
4)如圖3,若∠MON=80°BC是∠ABN的平分線,BC的反向延長線與∠OAB的平分線交于點(diǎn)E.試問:隨著點(diǎn)A、B的運(yùn)動(dòng),∠E的大小會(huì)變嗎?如果不會(huì),求∠E的度數(shù);如果會(huì),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知某船于上午8點(diǎn)在A處觀測小島C在北偏東60°方向上.該船以每小時(shí)30海里的速度向東航行到B處,此時(shí)測得小島C在北偏東30°方向上.船以原速度再繼續(xù)向東航行1.5小時(shí)到達(dá)小島C的正南方D點(diǎn).求船從AD一共走了多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P的坐標(biāo)為(2a+6,a-3

1)當(dāng)點(diǎn)P的縱坐標(biāo)為-4,求a的值;

2)若點(diǎn)Py軸上,求點(diǎn)P的坐標(biāo);

3)若點(diǎn)P在第四象限,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在第九章中我們研究了幾種特殊四邊形,請(qǐng)根據(jù)你的研究經(jīng)驗(yàn)來自己研究一種特殊四邊形——箏形.

初識(shí)定義:兩組鄰邊分別相等的四邊形是箏形.

1)根據(jù)箏形的定義,寫出一種你學(xué)過的四邊形滿足箏形的定義的是

性質(zhì)研究:

2)類比你學(xué)過的特殊四邊形的性質(zhì),通過觀察、測量、折疊、證明等操作活動(dòng),對(duì)如圖的箏形ABCDABADBCCD)的性質(zhì)進(jìn)行探究,以下判斷正確的有 (填序號(hào)).

ACBD;②ACBD互相平分;

AC平分∠BAD和∠BCD

④∠ABC=∠ADC;⑤∠BAD+∠BCD180°

⑥箏形ABCD的面積為AC×BD

3)在上面的箏形性質(zhì)中選擇一個(gè)進(jìn)行證明.

性質(zhì)應(yīng)用:

4)直接利用你發(fā)現(xiàn)的箏形的性質(zhì)解決下面的問題:

如圖,在箏形ABCD中,ABBCADCD,點(diǎn)P是對(duì)角線BD上一點(diǎn),過P分別做AD、CD垂線,垂足分別為點(diǎn)M、N.當(dāng)箏形ABCD滿足條件 時(shí),四邊形PNDM是正方形?請(qǐng)說明理由.

判定方法:

5)回憶我們學(xué)習(xí)過的特殊四邊形的判定方法(如四邊相等的四邊形是菱形),用文字語言寫出箏形的一個(gè)判定方法(除定義外):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了美化街道,劉大爺準(zhǔn)備利用自家墻外的空地種植兩種不同的花卉,墻的最大可用長度是12.5m,墻外可用寬度為3.25m.現(xiàn)有長為21m的籬笆,計(jì)劃靠著院墻圍成一個(gè)中間有一道隔欄的長方形花圃.

(1)若要圍成總面積為36m2的花圃,邊AB的長應(yīng)是多少?

(2)花圃的面積能否達(dá)到36.75m2?若能,求出邊AB的長;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,AD、BD、CD分別平分的外角,內(nèi)角,外角,以下結(jié)論:①;②;③;④,其中正確的結(jié)論有__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著夏季的到來,我縣居民的用電量猛增.目前,我縣城市居民用電收費(fèi)方式有以下兩種:

①普通電價(jià)付費(fèi)方式:全天0.52/度;

②峰谷電價(jià)付費(fèi)方式:用電高峰時(shí)段(早8:00—晚21:000.65/度;

用電低谷時(shí)段(晚21:00—早8:000.40/度.

1)已知小麗家5月份總用電量為280度.

①若其中高峰時(shí)段用電量為80度,則小麗家按照哪種方式付電費(fèi)比較合算?能省多少元?

②若小麗家采用峰谷電價(jià)付費(fèi)方式交電費(fèi)137元,那么,小麗家高峰時(shí)段用電量為多少度?

2)到6月份付費(fèi)時(shí),小麗發(fā)現(xiàn)6月份總用電量為320度,用峰谷電價(jià)付費(fèi)方式比普通電價(jià)付費(fèi)方式省了18.4元,那么,6月份小麗家高峰時(shí)段用電量為多少度?

查看答案和解析>>

同步練習(xí)冊答案