你還記得圖形的旋轉(zhuǎn)嗎?如圖,P是正方形ABCD內(nèi)一點(diǎn),PA=a,PB=2a,PC=3a.將△APB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),使AB與BC重合,得△CBP,
1.求證:△PBP,是等腰直角三角形;
2.猜想△PCP,的形狀,并說(shuō)明理由.(考查邏輯推理能力)
1.證明:由圖形旋轉(zhuǎn)可知: △APB≌△CP′B , ……………2分
∴BP=BP′=2a, AP=CP′=a.且∠ABP=∠CBP′………2分
由ABCD是正方形,得∠ABC=90°, ∴∠PBP′=90,∴△PBP′是等腰直角三角形!4分
2.由(1)所證△PBP′是等腰直角三角形,
∴PP′= , ……………6分
在△PP′C中,PP′=,PC = ,CP′=
且 ∴△PCP,是直角三角形…7分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
你還記得圖形的旋轉(zhuǎn)嗎?如圖,P是正方形ABCD內(nèi)一點(diǎn),PA=a,PB=2a,PC=3a.將△APB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),使AB與BC重合,得△CBP,
1.求證:△PBP,是等腰直角三角形;
2.猜想△PCP,的形狀,并說(shuō)明理由.(考查邏輯推理能力)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(山東萊蕪卷)數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分12分)你還記得圖形的旋轉(zhuǎn)嗎?如圖,P是正方形ABCD內(nèi)一點(diǎn),
PA=a,PB=2a,PC=3a.將△APB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),使AB與BC重合,得△CBP,.
⑴ 求證:△PBP,是等腰直角三角形;
⑵ 猜想△PCP,的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(山東萊蕪卷)數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分12分)你還記得圖形的旋轉(zhuǎn)嗎?如圖,P是正方形ABCD內(nèi)一點(diǎn),
PA=a,PB=2a,PC=3a.將△APB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),使AB與BC重合,得△CBP,.
⑴ 求證:△PBP,是等腰直角三角形;
⑵ 猜想△PCP,的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com