【題目】如圖,AC是⊙O的直徑,點B在⊙O上,∠ACB=30°.
(1)利用尺規(guī)作∠ABC的平分線BD,交AC于點E,交⊙O于點D,連接CD(保留作圖痕跡,不寫作法)
(2)在(1)所作的圖形中,求AB與CD的比值.
【答案】(1)畫圖見解析;
(2).
【解析】【試題分析】(1)尺規(guī)作圖,作一個角的平分線;(2)如圖2,連接OD,設(shè)⊙O的半徑為r,因為AC是⊙O的直徑,∴∠ABC=90°..
在Rt△ACB中,∠ACB=30°,根據(jù)30度的直角邊是斜邊的一半,AB=AC=r.
由于BD是∠ABC的平分線,根據(jù)角平分線的定義得,∠ABD=∠CBD=45° .
根據(jù)同弧所對的圓周角是圓心角的一半,得∠DOC=2∠CBD =90°
在Rt△ODC中,DC= =r.則.
【試題解析】
(1)如圖所示;
(2)如圖2,連接OD,設(shè)⊙O的半徑為r,
∵AC是⊙O的直徑,∴∠ABC=90°..
在Rt△ACB中,∠ACB=30°,
∴AB= AC=r.
∵BD是∠ABC的平分線,∴∠ABD=∠CBD=45° .
∴∠DOC=2∠CBD =90°
在Rt△ODC中,DC= =r.
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是 ( )
A. B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
①32﹣12=8×1
②52﹣32=8×2
③72﹣52=8×3
④92﹣72=8×4
(1)請你緊接著寫出兩個等式:
⑤;
⑥;
(2)利用這個規(guī)律計算:20152﹣20132的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(3,0),C(0, )三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列四組三角形中,一定是全等三角形的是( )
A. 周長相等的兩個等邊三角形
B. 三個內(nèi)角分別相等的兩個三角形
C. 兩條邊和其中一個角相等的兩個三角形
D. 面積相等的兩個等腰三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com