【題目】1)問題發(fā)現(xiàn):如圖1,在等腰直角三角形中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接,則的面積為__________;(請(qǐng)用含的式子表示的面積;提示:過點(diǎn)邊上的高

2)類比探究:如圖2,在一般的中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接.(1)中的結(jié)論是否成立,若成立,請(qǐng)說明理由.

3)拓展應(yīng)用:如圖3,在等腰三角形中,,將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接.試直接用含的式子表示的面積.(不寫探究過程)

【答案】1;(2)成立,理由見解析;(3

【解析】

(1)如圖1,過點(diǎn)DBC的垂線,與BC的延長(zhǎng)線交于點(diǎn)E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有DE=BC=a進(jìn)而由三角形的面積公式得出結(jié)論;
(2)如圖2,過點(diǎn)DBC的垂線,與BC的延長(zhǎng)線交于點(diǎn)E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有.DE=BC=a進(jìn)而由三角形的面積公式得出結(jié)論;
(3)如圖3,過點(diǎn)AAFBCF,過點(diǎn)DDEBC的延長(zhǎng)線于點(diǎn)E,由等腰三角形的性質(zhì)可以得出BF= BC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結(jié)論.

解:(1)如圖1,

過點(diǎn)D作DE⊥CB交CB的延長(zhǎng)線于E,
∴∠BED=∠ACB=90°,
由旋轉(zhuǎn)知,AB=BD,∠ABD=90°,
∴∠ABC+∠DBE=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE,
在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵S△BCD= BCDE =
故答案為

2)(1)中結(jié)論仍然成立,

理由:如圖,

過點(diǎn)邊上的高,

中,,

由旋轉(zhuǎn)可知:,

,

,

,

3.

如圖3,

過點(diǎn)A作AFBC與F,過點(diǎn)D作DE⊥BC的延長(zhǎng)線于點(diǎn)E,
∴∠AFB=E=90°,BF=BC=a.
∴∠FAB+ABF=90°
∵∠ABD=90°,
∴∠ABF+DBE=90°
∴∠FAB=EBD
線段BD是由線段AB旋轉(zhuǎn)得到的,
AB=BD
在△AFB和△BED中,

△AFB≌BED(AAS),
BF=DE= a.
SBCD= BCDE= aa=
△BCD的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在邊BC上,射線AEDC的延長(zhǎng)線于點(diǎn)F,已知BE=3CE,△ABE的周長(zhǎng)為9,則△ADF的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)為長(zhǎng)為5的線段上一點(diǎn),且,過,且,以為鄰邊作矩形,將線段繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到線段,優(yōu)弧,交,設(shè)旋轉(zhuǎn)角為

1)若扇形的面積為,則的度數(shù)為_______

2)連接,判斷與扇形所在圓的位置關(guān)系,并說明理由.

3)設(shè)為直線上一點(diǎn),沿所在直線折疊矩形,若折疊后所在的直線與扇形所在的相切,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(xn+0.5n為整數(shù)),例如:[2.3]=2(2.3)=3[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).

①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;

②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;

③方程4[x]+3(x)+[x)=11的解為1<x<1.5;

④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).

【答案】②③

【解析】分析:1)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(2)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(3)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(4)結(jié)合x的取值范圍,分類討論,利用題目中給出的方法計(jì)算后判定即可.

詳解:

當(dāng)x=1.7時(shí),

[x]+x+[x

=[1.7]+1.7+[1.7=1+2+2=5,故錯(cuò)誤;

當(dāng)x=﹣2.1時(shí),

[x]+x+[x

=[﹣2.1]+﹣2.1+[﹣2.1

=﹣3+﹣2+﹣2=﹣7,故正確;

當(dāng)1x1.5時(shí),

4[x]+3x+[x

=4×1+3×2+1

=4+6+1

=11,故正確;

④∵﹣1x1時(shí),

當(dāng)﹣1x﹣0.5時(shí),y=[x]+x+x=﹣1+0+x=x﹣1

當(dāng)﹣0.5x0時(shí),y=[x]+x+x=﹣1+0+x=x﹣1,

當(dāng)x=0時(shí),y=[x]+x+x=0+0+0=0,

當(dāng)0x0.5時(shí),y=[x]+x+x=0+1+x=x+1,

當(dāng)0.5x1時(shí),y=[x]+x+x=0+1+x=x+1,

y=4x,則x1=4x時(shí),得x=;x+1=4x時(shí),得x=;當(dāng)x=0時(shí),y=4x=0,

當(dāng)﹣1x1時(shí),函數(shù)y=[x]+x+x的圖象與正比例函數(shù)y=4x的圖象有三個(gè)交點(diǎn),故錯(cuò)誤,

故答案為:②③

點(diǎn)睛:本題是閱讀理解題,前三問比較容易判定,根據(jù)題目所給的方法判定即可;第四問較難,結(jié)合x的取值范圍分情況討論即可.

型】填空
結(jié)束】
19

【題目】先化簡(jiǎn)再求值: ,其中, .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)B,Cx軸上,AD兩點(diǎn)分別在反比例函數(shù)y=﹣x0)與yx0)的圖象上,若ABCD的面積為4,則k的值為:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019115日,第二屆中國國際進(jìn)口博覽會(huì)(The 2nd China International lmport Expo)在上海國家會(huì)展中心開幕.本次進(jìn)博會(huì)將共建開放合作、創(chuàng)新共享的世界經(jīng)濟(jì),見證海納百川的中國胸襟,詮釋兼濟(jì)天下的責(zé)任擔(dān)當(dāng).小滕、小劉兩人想到四個(gè)國家館參觀:.中國館;.俄羅斯館;.法國館;.沙特阿拉伯館.他們各自在這四個(gè)國家館中任意選擇一個(gè)參觀,每個(gè)國家館被選擇的可能性相同.

1)求小滕選擇.中國館的概率;

2)用畫樹狀圖或列表的方法,求小滕和小劉恰好選擇同一國家館的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,PBC上一動(dòng)點(diǎn),過PAP的垂線交CDE,將翻折得到,延長(zhǎng)FPABH,連結(jié)AE,PEACG.

1)求證;

2)當(dāng)時(shí),求AE的長(zhǎng);

3)當(dāng)時(shí),求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)如今,“垃圾分類”意識(shí)已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.

1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;

2)求乙所拿的兩袋垃圾不同類的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1 ,矩形, ,,點(diǎn),分別在邊,,點(diǎn),分別在邊,, ,交于點(diǎn),.

1)如圖(2)若的值為1,當(dāng)時(shí),的值.

2)若的值為3,當(dāng)點(diǎn)是矩形的頂點(diǎn), , 時(shí),的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案