【題目】如圖,在平面直角坐標系中,將矩形ABCD沿直線AE折疊(點E在邊DC上),折疊后頂點恰好落在邊OC上的點F處,若點D的坐標為(10,8).
(1)求CE的長;
(2)寫出點E的坐標.
【答案】(1)3;(2)(10,3).
【解析】
(1)根據(jù)折疊的性質(zhì)得到AF=AD,所以在直角△AOF中,利用勾股定理來求OF=6,然后設(shè)EC=x,則EF=DE=8﹣x,CF=10﹣6=4,根據(jù)勾股定理列方程求出EC;
(2)由(1)可得點E的坐標.
解:(1)∵四邊形AOCD為矩形,D的坐標為(10,8),
∴AD=BC=10,DC=AB=8,
∵矩形沿AE折疊,使D落在BC上的點F處,
∴AD=AF=10,DE=EF,
在Rt△AOF中,OF==6,
∴FC=10﹣6=4,
設(shè)EC=x,則DE=EF=8﹣x,
在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,
即EC的長為3.
(2)∵EC的長為3,
∴點E的坐標為(10,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y1=(k1﹥0)與一次函數(shù)y2=k2x+1(k2≠0)相交于A、B兩點,AC⊥x軸于點C,若△OAC的面積為1,且tan∠AOC=2.
(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1,點P的對應(yīng)點為P1(a+6,b-2).
(1)直接寫出點A1,B1,C1的坐標.
(2)在圖中畫出△A1B1C1.
(3)連接AA1,求△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型 | B型 | |
價格萬元臺 | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認為該公司有哪幾種購買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)求函數(shù)圖象的對稱軸、頂點坐標、與坐標軸交點的坐標,并畫出函數(shù)的大致圖象;
(2)根據(jù)圖象直接寫出函數(shù)值y為負數(shù)時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的盒子里裝有30個除顏色外其它均相同的球,其中紅球有m個,白球有3m個,其它均為黃球.現(xiàn)小李從盒子里隨機摸出一個球,若是紅球,則小李獲勝;小李把摸出的球放回盒子里搖勻,由小馬隨機摸出一個球,若為黃球,則小馬獲勝.
(1)當m=4時,求小李摸到紅球的概率是多少?
(2)當m為何值時,游戲?qū)﹄p方是公平的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過坐標原點,與軸的另一個交點為A(-2,0).
(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點P,使△AOP的面積為3,若存在請求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點.
(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由;
(3)P為拋物線上一點,它關(guān)于直線BC的對稱點為Q.
①當四邊形PBQC為菱形時,求點P的坐標;
②點P的橫坐標為t(0<t<4),當t為何值時,四邊形PBQC的面積最大,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com