【題目】如圖1CBCDO的切線,切點(diǎn)分別為B、DCD的延長線與O的直徑BE的延長線交于A點(diǎn),連OC,ED

1)探索OCED的位置關(guān)系,并加以證明;

2)若OD=4CD=6,求tan∠ADE的值.

【答案】1OC//ED,證明見詳解;(2tanADE=

【解析】

(1)連接OD,證明△CODCOB,則∠COD =COB;又∠DOB是等腰三角形ODE的外角,則∠DOB= 2DEB,由此可證得∠COB =DEB;同位角相等,則DE//OC;

(2)RtA BC中,由勾股定理易求得AB的長;然后在RtADO中,用⊙O的半徑表示出OA的長,再根據(jù)勾股定理求出⊙O的半徑,則RtCOD中,即可求得∠OCD的正切值,由(1)知:∠ADE=OCE,由此可求出∠ADE的正切值.

解:(1)OC//ED ,

證明:連接ODBC,CD是⊙O的切線,

∴∠CBO=CDO= 90°,

OD= OB,CO= CO,

∴△COB COD

∴∠COD=COB,

又∵OD= OE

∴∠EDO=DEO,

∴∠DEO=DOB,

∴∠DEO=COB,

OC// ED

(2)CD=6,AD= 4

CB= 6,AC= 10,

AB = 8,

設(shè)⊙O的半徑為r,

RtADO中有

解得r= 3

OC// ED,

∴∠ADE=DCO,

RtCOD中, tanDCO = ,

tanADE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,AD=2,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)后得到矩形EBGF,此時(shí)恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM的長度為( 。

A. B. 2 C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B5,0)兩點(diǎn),直線y=﹣ x+3y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線CD上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)PPFx軸于點(diǎn)F,交 線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)求PE的長最大時(shí)m的值.

3Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以P、Q、C、D為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,請(qǐng)直接寫出存在 個(gè)滿足題意的點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB5,BC12.如果分別以AC為圓心的兩圓外切,且圓A與直線BC相交,點(diǎn)D在圓A外,那么圓C的半徑長r的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和等邊△AEF都內(nèi)接于圓O,EFBC、CD別相交于點(diǎn)G、H.若AE6,則EG的長為( 。

A.B.3C.D.23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直角頂點(diǎn)P在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點(diǎn)C,軸于點(diǎn)DAB分別與x軸,y軸相交于點(diǎn)F已知點(diǎn)B的坐標(biāo)為

填空:______;

證明:;

當(dāng)四邊形ABCD的面積和的面積相等時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線圖象的一部分,拋物線的頂點(diǎn)是,對(duì)稱軸是直線,且拋物線與軸的一個(gè)交點(diǎn)為;直線的解析式為.下列結(jié)論:①;②;③方程有兩個(gè)不相等的實(shí)數(shù)根;④拋物線與軸的另一個(gè)交點(diǎn)是;⑤當(dāng)時(shí),則.其中正確的是(

A.①②B.①③⑤C.①④D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB,C在一次函數(shù)的圖象上,它們的橫坐標(biāo)依次為,12,分別過這些點(diǎn)作x軸與y軸的垂線,則圖中陰影部分的面積之和是( 。

A. 1 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】移動(dòng)支付快捷高效,中國移動(dòng)支付在世界處于領(lǐng)先水平,為了解人們平時(shí)最喜歡用哪種,移動(dòng)支付支付方式,為此在某步行街,使用某app,軟件對(duì)使用移動(dòng)支付的行人進(jìn)行隨機(jī)抽樣調(diào)查,設(shè)置了四個(gè)選項(xiàng),支付寶,微信,銀行卡,其他移動(dòng)支付(每人只選一項(xiàng)),以下是根據(jù)調(diào)查結(jié)果分別整理的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)下列統(tǒng)計(jì)圖提供的信息,完成下列問題.

(1)這次調(diào)查的樣本容量是  ;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)求在此次調(diào)查中表示使用微信支付的扇形所對(duì)的圓心角的度數(shù).

(4)若某天該步行街人流量為10萬人,其中40%的人購物并選擇移動(dòng)支付,請(qǐng)你依據(jù)此次調(diào)查獲得的信息,估計(jì)一下當(dāng)天使用銀行卡支付的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案