精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設運動時間為t秒.

(1)當t=時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當t為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設△PCQ的面積為S平方單位.
①求S與t之間的函數關系式;
②當S最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的△APD與△PCQ重疊部分的面積.

【答案】
(1)7
(2)

解:Q從C到A的時間是2秒,P從B到C的時間是3秒.

則當0≤t≤2時,若△PCQ為等腰三角形,則一定有:PC=CQ,即3﹣t=2t,解得:t=1s.

當2<t≤3時,若△PCQ為等腰三角形,則一定有PQ=QC(如圖1).則Q在PC的中垂線上,作QH⊥AC,則QH= PC.△AQH∽△ABC,

∵BC=3,AB=5,QH⊥AC,

= =

∴QH= AQ,

在直角△AQH中,AQ=2t﹣4,則QH= AQ=

∵PC=BC﹣BP=3﹣t,

(2t﹣4)= (3﹣t),

解得:t= s;

綜上所述,t=1s或 s


(3)

解:①連接DC(即AD的折疊線)交PQ于點O,過Q作QE⊥CA于點E,過O作OF⊥CA于點F,

則△PCO即為折疊后的△APD與△PCQ重疊部分的面積.

在點Q從點B返回點A的運動過程中,P一定在AC上,則PC=t﹣3,BQ=2t﹣9,即AQ=5﹣(2t﹣9)=14﹣2t.

同(2)可得:△PCQ中,PC邊上的高是: (14﹣2t),

故S= (t﹣3)× (14﹣2t)= (﹣t2+10t﹣21).

②故當t=5時,s有最大值,此時,P在AC的中點.(如圖2).

∵沿直線PD折疊,使點A落在直線PC上,

∴PD一定是AC的中垂線.

則AP= AC=2,PD= BC=

AQ=14﹣2t=14﹣2×5=4.

則PC邊上的高是: AQ= ×4=

∵∠COF=∠CDP=∠B,

所以,在Rt△COF中,tan∠COF= ,設OF為x,

則利用三角函數得CF= ,PF=2﹣ ,

則QE= ,AE= ,

∴PE=AE﹣AP= ,

∵△POF∽△PQE,

= ,

解得:x=

SPCO= ×2× =


【解析】解:(1)在直角△ABC中,AC= =4,
則Q從C到B經過的路程是9,需要的時間是4.5秒.此時P運動的路程是4.5,P和Q之間的距離是:3+4+5﹣4.5=7.5.
根據題意得:(t﹣4.5)+2(t﹣4.5)=7.5,解得:t=7s.
【考點精析】利用等腰三角形的性質和勾股定理的概念對題目進行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線AB∥CD,AE平分∠CAB.AE與CD相交于點E,∠ACD=40°,則∠BAE的度數是( 。
A.40°
B.70°
C.80°
D.140°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】楊陽同學沿一段筆直的人行道行走,在由A步行到達B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標語,其具體信息匯集如下: 如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據上述信息求標語CD的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國務院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統計圖表:

獲獎等次

頻數

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優(yōu)勝獎

a

0.30

鼓勵獎

80

0.40

請根據所給信息,解答下列問題:

(1)a= , b= , 且補全頻數分布直方圖;
(2)若用扇形統計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應的扇形圓心角的度數是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的兩格中,點A、B、C都是格點.

(1)將△ABC向左平移6個單位長度得到得到△A1B1C1
(2)將△ABC繞點O按逆時針方向旋轉180°得到△A2B2C2 , 請畫出△A2B2C2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程組和分式方程:
(1)
(2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,一次函數y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.

(1)寫出A、C兩點的坐標;
(2)當0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;
(3)當1<m<2時,是否存在實數m,使CDAQ=PQDE?若能,求出m的值(用含a的代數式表示);若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,切點分別為A、B兩點,點C在⊙O上,如果∠ACB=70°,那么∠P的度數是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結果兩人同時到達C地.求兩人的平均速度,為解決此問題,設乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是( 。
A.=
B.=
C.=
D.=

查看答案和解析>>

同步練習冊答案