已知:拋物線與x軸交于點A、B(A左B右),其中點B的坐標(biāo)為(7,0),設(shè)拋物線的頂點為C.

(1)求拋物線的解析式和點C的坐標(biāo);
(2)如圖1,若AC交y軸于點D,過D點作DE∥AB交BC于E.點P為DE上一動點,PF⊥AC于F,PG⊥BC于G.設(shè)點P的橫坐標(biāo)為a,四邊形CFPG的面積為y,求y與a的函數(shù)關(guān)系式和y的最大值;
(3)如圖2,在條件(2)下,過P作PH⊥x軸于點H,連結(jié)FH、GH,是否存在點P,使得△PFH與△PHG相似?若存在,求出P點坐標(biāo);若不存在,說明理由.

(1),C(3,4);(2),當(dāng)時,y最大值=
(3)(3,1)或(,1)或(,1)

解析試題分析:(1)由題意把點B的坐標(biāo)(7,0)代入拋物線即可得到拋物線的解析式,再根據(jù)拋物線的頂點坐標(biāo)公式()即可求得頂點C的坐標(biāo);
(2)由DE∥AB,再結(jié)合PF⊥AC于F,PG⊥BC于G,可得四邊形CFPG為矩形,根據(jù)矩形的性質(zhì)及二次函數(shù)的解析式即可求得y與a的函數(shù)關(guān)系式,從而可以求得y的最大值;
(3)根據(jù)相似三角形的性質(zhì):相似三角形的對應(yīng)邊的比等于相似比,求解即可,要注意分情況討論.
試題解析:(1)∵拋物線過點B(7,0)
,解得
∴拋物線的解析式為,
,
∴頂點C的坐標(biāo)為(3,4);
(2)由題意得四邊形CFPG為矩形,

當(dāng)時,y最大值=
(3)(3,1)或(,1)或(,1).
考點:拋物線綜合題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設(shè)點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標(biāo);
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點P的個數(shù)(本小題直接寫出結(jié)論,不要求寫出計算、證明過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若花園的BC邊長為x米,花園的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值;若不能,說明理由;
(3)請結(jié)合題意,判斷當(dāng)x取何值時,花園的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:已知二次函數(shù)的圖象對稱軸為,且過點B(-1,0).求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價每天增加x元(x為10的整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)
(1)若點在此二次函數(shù)的圖象上,則     (填 “>”、“=”或“<”);
(2)如圖,此二次函數(shù)的圖象經(jīng)過點,正方形ABCD的頂點C、D在x軸上, A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)△PAC的周長最小時,求點P的坐標(biāo),并求出此時的周長;
(3)在直線l上是否存在點M,使△MAC為直角三角形?若存在,請寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線過兩點(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點為(1,d).
(1)求拋物線與雙曲線的解析式;
(2)已知點都在雙曲線(x>0)上,它們的橫坐標(biāo)分別為,O為坐標(biāo)原點,記,點Q在雙曲線(x<0)上,過Q作QM⊥y軸于M,記
的值.

查看答案和解析>>

同步練習(xí)冊答案