如圖,將一張矩形紙片ABCD沿EF折疊,使頂點C,D分別落在點C′,D′處,C′E交AF于點G,若∠CEF=70°,則∠GFD′=    °.
【答案】分析:根據(jù)兩直線平行,內(nèi)錯角相等求出∠EFG,再根據(jù)平角的定義求出∠EFD,然后根據(jù)折疊的性質(zhì)可得∠EFD′=∠EFD,再根據(jù)圖形,∠GFD′=∠EFD′-∠EFG,代入數(shù)據(jù)計算即可得解.
解答:解:矩形紙片ABCD中,AD∥BC,
∵∠CEF=70°,
∴∠EFG=∠CEF=70°,
∴∠EFD=180°-70°=110°,
根據(jù)折疊的性質(zhì),∠EFD′=∠EFD=110°,
∴∠GFD′=∠EFD′-∠EFG,
=110°-70°,
=40°.
故答案為:40.
點評:本題考查了平行線的性質(zhì),以及折疊變換,根據(jù)兩直線平行,內(nèi)錯角相等求出∠EFG是解題的關鍵,另外,根據(jù)折疊前后的兩個角相等也很重要.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,將一張矩形紙片ABCD折疊,使AB落在AD邊上,然后打開,折痕為AE,頂點B的落點為F.你認為四邊形ABEF是什么特殊四邊形?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖:將一張矩形紙片ABCD的角C沿著GF折疊(F在BC邊上,不與B、C重合)使得C點落在矩形ABCD內(nèi)部的E處,F(xiàn)H平分∠BFE,則∠GFH的度數(shù)α滿足( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一張矩形紙片(矩形ABCD)按如圖方式折疊,使頂點B和D重合,折痕為EF.
(1)連接EB,求證:四邊形EBFD是菱形;
(2)若AB=3,BC=9,求重疊部分三角形DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一張矩形紙片A′B′C′D′沿EF折疊,使點B′落在A′D′邊上的點B處;沿BG折疊,使點D′落在點D處,且BD過F點.
(1)試判斷四邊形BEFG的形狀,并證明你的結論;
(2)當∠BFE為多少度時,四邊形BEFG是菱形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一張矩形紙片對折再對折,然后沿著圖中的虛線剪下一個角(虛線與折痕成45°角),打開,則所得的平面圖形是
正方形
正方形

查看答案和解析>>

同步練習冊答案