【題目】在平面直角坐標系中,將二次函數(shù)y=a(a0)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與x軸交于點AB(A在點B的左側(cè)),OA=1,經(jīng)過點A的一次函數(shù)()的圖象與y軸正半軸交于點C,且與拋物線的另一個交點為D,△ABD的面積為5

(1)求拋物線和一次函數(shù)的解析式;

(2)拋物線上的動點E在一次函數(shù)的圖象下方,求△ACE面積的最大值,并求出此時點E的坐標;

【答案】(1);(2)最大值是,此時E點坐標為

【解析】

(1)先寫出平移后的拋物線解析式,經(jīng)過點A(-1,0),可求得a的值,由△ABD的面積為5可求出點D的縱坐標,代入拋物線解析式求出橫坐標,由A、D的坐標可求出一次函數(shù)解析式;
(2)EMy軸交ADM,如圖,利用三角形面積公式,由構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;

(1)將二次函數(shù))的圖象向右平移1個單位,再向下平移2個單位,得到的拋物線解析式為

OA=1,

∴點A的坐標為(10),代入拋物線的解析式得,,

∴拋物線的解析式為,即

y=0,解得

∴點B的坐標為(3,0)

AB=OA+OB=4,

∵△ABD的面積為5,

,

,

代入拋物線解析式得,,

解得

∴點D的坐標為(4,)

設(shè)直線AD的解析式為,

,解得:,

∴直線AD的解析式為;

(2)過點EEMy軸交ADM,交x軸于N,如圖,

設(shè)點E的坐標為(,),則點M的坐標為()

,

∴當(dāng) 時,△ACE的面積有最大值,最大值是,此時E點坐標為( ,)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將立方體紙盒沿某些棱剪開,且使六個面連在一起,然后鋪平,可以得到其表面展開圖的平面圖形.

1)以下兩個方格圖中的陰影部分能表示立方體表面展開圖的是   (填AB).

2)在以下方格圖中,畫一個與(1)中呈現(xiàn)的陰影部分不相似(包括不全等)的立方體表面展開圖.(用陰影表示)

3)如圖中的實線是立方體紙盒的剪裁線,請將其表面展開圖畫在右圖的方格圖中.(用陰影表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線交坐標軸于點,點在線段上,以為一邊在第一象限作正方形.若雙曲線經(jīng)過點.則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩超市(大型商場)同時開業(yè),為了吸引顧客,都舉行有獎酬賓活動:凡購物滿元,均可得到一次摸獎的機會.在一個紙盒里裝有個紅球和個白球(編號分別為紅1、紅、白1、白),除顏色外其它都相同,摸獎?wù)咭淮螐闹忻鰞蓚球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如表)

甲超市:

兩紅

--紅一白

兩白

禮金券()

乙超市:

兩紅

--紅一白

兩白

禮金券()

1)列舉出一次摸獎時兩球的所有情況;

2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某辦公樓AB的右邊有一建筑物CD,在建設(shè)物CD離地面2米高的點E處觀測辦公樓頂A點,測得的仰角=,在離建設(shè)物CD 25米遠的F點觀測辦公樓頂A點,測得的仰角=B,F,C在一條直線上).

1)求辦公樓AB的高度;

2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達式;

2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮晚上在廣場散步,圖中線段AB表示站立在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈的位置.

1)請你在圖中畫出小亮站在AB處的影子BE;

2)小亮的身高為1.6m,當(dāng)小亮離開燈桿的距離OB2.4m時,影長為1.2m,若小亮離開燈桿的距離OD6m時,則小亮(CD)的影長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A﹣1,0)和B3,0)兩點,交y軸于點E

1)求此拋物線的解析式.

2)若直線y=x+1與拋物線交于A、D兩點,與y軸交于點F,連接DE,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線x軸交于A-1,0),B3,0)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設(shè)點D的橫坐標為m0m3),連接CD,BDBC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,CM,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案