【題目】如圖所示的鋼架中,∠A=18°,焊上等長的鋼條P1P2,P2P3P3P4,P4P5來加固鋼架.∠P5P4B的度數(shù)是( 。

A.80°B.85°C.90°D.100°

【答案】C

【解析】

根據(jù)等腰三角形的性質(zhì)可得到幾組相等的角,再根據(jù)三角形外角的性質(zhì)可得到∠P3P5P4與∠A之間的關系,從而不難求解.

解:∵AP1=P1P2,P1P2=P2P3P3P4=P2P3,P3P4=P4P5,

∴∠A=P1P2A

P2P1P3=A+P1P2A=P2P3P1,

P3P2P4=A+P2P3P1=P3P4P2,

P4P3P5=A+P3P4P2=P4P5P3,

∴∠P5P4B=A +P4P5P3=5A=90°

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場第一次用元購進某款智能清潔機器人進行銷售,很快銷售一空,商家又用元第二次購進同款智能清潔機器人,所購進數(shù)量是第一次的倍,但單價貴了元.

1)求該商家第一次購進智能清潔機器人多少臺?

2)若所有智能清潔機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于(不考慮其它因素),那么每臺智能清潔機器人的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°EAB邊的中點,以BE為邊作等邊BDE,連接AD,CD

1)求證:ADE≌△CDB;

2)若BC1,在AC邊上找一點H,使得BH+EH最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某村要設計修建一條引水渠,渠道的橫斷面為等腰梯形,渠道底面寬0.8m,渠道內(nèi)坡度是1:0.5.引水時,水面要低于渠道上沿0.2m,水流的橫斷面(梯形ABFE)的面積為1.3m2,求水渠的深度h.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在OP上滑動,將窗戶OM按圖示方向內(nèi)旋轉(zhuǎn)35°到達ON位置,此時點A,C的對應位置分別是點B,D,測量出∠ODB=25°,點D到點O的距離為30cm,求滑動支架BD的長.

(結(jié)果精確到1cm,參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=2,AC=2,點DBC的中點,點E是邊AB上一動點,沿DE所在直線把BDE翻折到B′DE的位置,B′DAB于點F.若AB′F為直角三角形,則AE的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,,垂足為點,,垂足為點邊的中點,連結(jié)、.設,,則的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=4.2cm,則AD=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1的小正方形網(wǎng)格中,AOB的頂點均在格點上.

(1)B點關于y軸的對稱點坐標為

(2)將AOB向左平移3個單位長度,再向上平移2個單位長度得到A1O1B1,請畫出A1O1B1;

(3)在(2)的條件下,AOB邊AB上有一點P的坐標為(a,b),則平移后對應點P1的坐標為

查看答案和解析>>

同步練習冊答案