【題目】如圖,在直角坐標(biāo)系中, B(0,8),D(10,0),一次函數(shù)y=x+的圖象過C(16,n),與x軸交于A點。
(1)求證:四邊形ABCD為平行四邊形;
(2)將△AOB繞點O順時針旋轉(zhuǎn),旋轉(zhuǎn)得△A1OB1,問:能否使以點O、A1、D、B1為頂點的四邊形是平行四邊形?若能,求點A1的坐標(biāo);若不能,請說明理由;
【答案】(1)見解析;(2)能,所求滿足條件的A1為:(―, )、(, )、(,―)
【解析】整體分析:
(1)把點過C(16,n)代入到y=x+,求出n,得到點C的坐標(biāo),求出點A的坐標(biāo),由AD與BC平行且相等證明;(2)分三種情況討論,有兩種是A1B1與OD平行,一種是A1B1與OD相交,結(jié)合平行四邊形的性質(zhì)和勾股定理求解.
解:(1)∵y=x+的圖象過C(16,n),A兩點,∴n=×16+=8,
∴C(16,8),A(-6,0).
∵B(0,8),∴BD∥x軸,
又∵AD=10―(―6)=16=BC,
∴四邊形ABCD為平行四邊形
(2)由題意可知;AB=A1B1=10,∠AOB=∠A1OB1=90°
①△AOB旋轉(zhuǎn)后,若A1B1∥x軸,構(gòu)成四邊形OA1B1D如圖①,
又∵A1B1=OD=10,∴四邊形OA1B1D構(gòu)成平行四邊形,
此時,設(shè)A1B1與y軸交于H,
則OH==,A1H==,
∴A1(―, ).
②△AOB旋轉(zhuǎn)后,若A1B1的中點E在x軸上,構(gòu)成四邊形OA1DB1如圖②.
∵∠A1OB1=90°,∴OE=A1B1=5,∴OE=ED=5,
∴四邊形OA1DB1構(gòu)成平行四邊形,
設(shè)作A1N⊥x軸交于N,∠A1OB1=∠OA1D=90°.
則AN==,ON==,
∴A1(, ).
③△AOB旋轉(zhuǎn)后,若A1B1∥x軸,構(gòu)成四邊形ODA1B1如圖③,
又∵A1B1=OD=10,∴四邊形ODA1B1構(gòu)成平行四邊形,
此時,設(shè)A1B1與y軸交于M,
則OM==,A1M==,
∴A1(,―).
綜上所述,所求滿足條件的A1為(―, )、(, )、(,―)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=.
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A.C的坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OE是∠AOC的角平分線,OD是∠BOC的角平分線.
(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度數(shù);
(2)若∠AOB=90°,∠BOC=α,求∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解下面內(nèi)容,并解決問題:
善于思考的小明在學(xué)習(xí)《實數(shù)》一章后,自己探究出了下面的兩個結(jié)論:
①,,和都是9×4的算術(shù)平方根,
而9×4的算術(shù)平方根只有一個,所以=.
②,,和都是9×16的算術(shù)平方根,
而9×16的算術(shù)平方根只有一個,所以 .
請解決以下問題:
(1)請仿照①幫助小明完成②的填空,并猜想:一般地,當(dāng)a≥0,b≥0時,與、之間的大小關(guān)系是怎樣的?
(2)再舉一個例子,檢驗?zāi)悴孪氲慕Y(jié)果是否正確.
(3)運用以上結(jié)論,計算:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“摩拜單車”公司調(diào)查無錫市民對其產(chǎn)品的了解情況,隨機抽取部分市民進行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為、、、.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次問卷共隨機調(diào)查了 名市民,扇形統(tǒng)計圖中 .
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中“D類型”所對應(yīng)的圓心角的度數(shù)是 .
(4)從這次接受調(diào)查的市民中隨機抽查一個,恰好是“不了解”的概率是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1、圖2、圖3分別表示甲、乙、丙三人由A地到B地的路線圖(箭頭表示行進的方向).其中E為AB的中點,AH>HB,判斷三人行進路線長度的大小關(guān)系為( )
A.甲<乙<丙 B.乙<丙<甲
C.丙<乙<甲 D.甲=乙=丙
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:
第一組:2,4;
第二組:6,8,10,12;
第三組:14,16,18,20,22,24
第四組:26,28,30,32,34,36,38,40
……
則現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個數(shù)(從左到右數(shù)),如A10=(2,3),則A2018=( )
A. (31,63) B. (32,17) C. (33,16) D. (34,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應(yīng)點為點P′.設(shè)點Q運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為( )
A. B. 2 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如下圖, AB∥CD,點E,F分別為AB,CD上一點.
(1) 在AB,CD之間有一點M(點M不在線段EF上),連接ME,MF,試探究∠AEM,∠EMF,∠MFC之間有怎樣的數(shù)量關(guān)系. 請補全圖形,并在圖形下面寫出相應(yīng)的數(shù)量關(guān)系,選其中一個進行證明.
(2)如下圖,在AB,CD之間有兩點M,N,連接ME,MN,NF,請選擇一個圖形寫出∠AEM,∠EMN,∠MNF,∠NFC 存在的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com