如圖,P是⊙O外一點(diǎn),PA、PB切⊙O于點(diǎn)A、B,點(diǎn)C在優(yōu)弧AB上,若么P=68°,則∠ACB等于( 。
分析:由PA與PB都為圓的切線,利用切線的性質(zhì)得到兩個角為直角,根據(jù)∠P的度數(shù),利用四邊形的內(nèi)角和定理求出∠AOB的度數(shù),再利用同弧所對的圓心角等于所對圓周角的2倍,求出∠ACB的度數(shù)即可.
解答:解:∵PA、PB都為圓O的切線,
∴∠PAO=∠PBO=90°,
∵∠P=68°,
∴∠AOB=112°,
∵∠AOB與∠ACB都對
AB

∴∠ACB=
1
2
∠AOB=56°.
故選C.
點(diǎn)評:此題考查了切線的性質(zhì),圓周角定理,以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P是⊙O外一點(diǎn),PA切⊙O于A,AB是⊙O的直徑,PB交⊙O于C,若PA=2cm,∠B=30°,求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶) 如圖,P是⊙O外一點(diǎn),PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)已知:如圖,P是⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,AB是⊙O的直徑,BC∥OP交⊙O于點(diǎn)C.
(1)判斷直線PC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若BC=2,sin
1
2
∠APC=
1
3
,求PC的長及點(diǎn)C到PA的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P是⊙O外一點(diǎn),PA和PB是⊙O的切線,A,B為切點(diǎn),P O與AB交于點(diǎn)M,過M任作⊙O的弦CD.
求證:∠CPO=∠DPO.

查看答案和解析>>

同步練習(xí)冊答案