【題目】平面直角坐標系中,△ABC的三個頂點坐標分別為A(0,4),B(2,4),C(3,﹣1).

(1)試在平面直角坐標系中,標出A、B、C三點;
(2)求△ABC的面積.
(3)若△A1B1C1與△ABC關(guān)于x軸對稱,寫出A1、B1、C1的坐標,并畫出△A1B1C1

【答案】
(1)

解:如圖A、B、C三點即為所求


(2)

解:SABC= ×2×5=5


(3)

解:A1、B1、C1的坐標為:A1(0,﹣4),B1(2,﹣4),C1(3,1),

△A1B1C1即為所求


【解析】(1)直接利用已知點在坐標系中標出各點;(2)直接利用三角形面積求法得出答案;(3)利用關(guān)于x軸對稱點的性質(zhì)得出各點位置進而得出答案.
【考點精析】關(guān)于本題考查的坐標與圖形變化-平移,需要了解新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB∥CD,∠BCD的三等分線是CP,CQ,又CR⊥CP,若∠B=78°,則∠RCE=(
A.66°
B.65°
C.58°
D.56°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO

1)已知BD=,求正方形ABCD的邊長;

2)猜想線段EMCN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下四個結(jié)論: ①AE=CF;
②△EPF是等腰直角三角形;
③S四邊形AEPF= SABC;
④當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合) BE+CF=EF.
上述結(jié)論中始終正確的有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,B=60°,BC=2,A′B′C可以由ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應點,點B′與點B是對應點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐探究,解決問題
如圖1,△ABC中,AD為BC邊上的中線,則SABD=SACD

(1)在圖2中,E、F分別為矩形ABCD的邊AD、BC的中點,且AB=4,AD=8,則S陰影=

(2)在圖3中,E、F分別為平行四邊形ABCD的邊AD、BC的中點,則S陰影和S平行四邊形ABCD之間滿足的關(guān)系式為;

(3)在圖4中,E、F分別為任意四邊形ABCD的邊AD、BC的中點,則S陰影和S四邊形ABCD之間還滿足(2)中的關(guān)系式嗎?若滿足,請予以證明,若不滿足,說明理由.
解決問題:

(4)在圖5中,E、G、F、H分別為任意四邊形ABCD的邊AD、AB、BC、CD的中點,并且圖中陰影部分的面積為20平方米,求圖中四個小三角形的面積和(即S1+S2+S3+S4的值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】檢驗下列因式分解是否正確.

(1)9b2-4a2=(2a+3b)(2a-3b);

(2)x2-3x-4=(x+4)(x-1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為鼓勵市民節(jié)約使用燃氣,對燃氣進行分段收費,每月使用11立方米以內(nèi)(包括11立方米)每立方米收費2元,超過部分按每立方米2.4元收。绻硲羰褂9立方米燃氣,需要燃氣費為_____元;如果某戶的燃氣使用量是x立方米(x超過11),那么燃氣費用yx的函數(shù)關(guān)系式是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案