【題目】某種水彩筆,在購買時,若同時額外購買筆芯,每個優(yōu)惠價為3元,使用期間,若備用筆芯不足時需另外購買,每個5元.現(xiàn)要對在購買水彩筆時應同時購買幾個筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個數(shù)的30組數(shù)據(jù).

水筆支數(shù)

4

6

8

7

5

需要更換的筆芯個數(shù)x

7

8

9

10

11

x表示水彩筆在使用期內(nèi)需要更換的筆芯個數(shù),y表示每支水彩筆在購買筆芯上所需要的費用(單位:元),n表示購買水彩筆的同時購買的筆芯個數(shù).

1)若x9,n7,則y   ;若x7n9,則y   ;

2)若n9,用含x的的代數(shù)式表示y的取值;

3)假設這30支筆在購買時,每支筆同時購買9個筆芯,或每支筆同時購買10個筆芯,分別計算這30支筆在購買筆芯時所需的費用,以費用最省作為選擇依據(jù),判斷購買一支水彩筆的同時應購買9個還是10個筆芯?

【答案】131元;27元;(2y;(3)購買一支水彩筆的同時應購買9個筆芯的費用最省

【解析】

1)由y=購買水彩筆的同時購買的筆芯的費用+水彩筆在使用期內(nèi)需要更換的筆芯不足個數(shù)的費用,可求解;

2)分兩種情況列式;

3)分兩種情況計算.

解:(1)若x9,n7,

y3×7+5×97)=31元,

x7,n9,

y3×927元,

故答案為:31元,27元;

2)當n9時,y

330支筆在購買時每支筆同時購買9個筆芯所需費用的平均數(shù)為:

27+

30支筆在購買時每支筆同時購買10個筆芯所需費用的平均數(shù)為:

30+,

∴購買一支水彩筆的同時應購買9個筆芯的費用最。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點EBC邊上一點,AEBD交于點F,已知ABF的面積等于 6,BEF的面積等于4,則四邊形CDFE的面積等于___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)前期,某花店購進康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍,求降價后每枝玫瑰的售價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為定點,定直線,是直線上一動點,分別為的中點,對下列各值: ①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大小.其中不會隨點的移動而變化的是( )

A.②③B.②⑤C.①③④D.④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,OBA分別為90°30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26,).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象如圖所示.

(1)從小剛家到該景區(qū)乘車一共用了多少時間?

(2)求線段AB對應的函數(shù)解析式;

(3)小剛一家出發(fā)2.5小時時離目的地多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖甲,點O在直線AB上,OC 平分∠AOD,∠BOD= 42°12′,求∠AOC的度數(shù).

(2)已知,如圖乙,BC 兩點把線段AD 分成253三部分,MAD的中點,BM=6cm,求CMAD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是(   )

A. 24m B. 25m C. 28m D. 30m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:反比例函數(shù)y=與一次函數(shù)y=3x-2的圖象相交于點A(2,n),B兩點.

(1)求反比例函數(shù)的表達式及點B的坐標;

(2)直接寫出當>3x-2時,x的取值范圍.

查看答案和解析>>

同步練習冊答案