【題目】如圖所示,點(diǎn)I的內(nèi)心,AI的延長(zhǎng)線交的外接圓于點(diǎn)D,交BC邊于點(diǎn)E,

求證:(1ID=BD

2BD2 =DA·ED

【答案】1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

1)連接BI,由內(nèi)心的性質(zhì)得到∠1=2,∠3=4,而∠1=5,由此可得∠5=2,即可證明∠BID=IBD,由等角對(duì)等邊即可得出結(jié)論;

2)由(1)得∠5=2,易證得△BED∽△ABD,由此可得出所求的結(jié)論.

1)連接BI

I是△ABC的內(nèi)心,∴∠1=2,∠3=4

∵∠5=1,∴∠5=2

∵∠BID=3+2,∠DBI=4+5,∴∠BID=DBI,∴ID=BD

2)由(1)得:∠5=2

又∵∠D=D,∴△BDE∽△ADB,∴BDDE=ADBD;∴BD2=ADDE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,對(duì)于點(diǎn)Px,y)和Qxy),給出如下定義:若y,則稱點(diǎn)Q為點(diǎn)P可控變點(diǎn).請(qǐng)問(wèn):若點(diǎn)P在函數(shù)y=﹣x2+16(﹣5≤xa)的圖象上,其可控變點(diǎn)Q的縱坐標(biāo)y的取值范圍是﹣16≤y′≤16,則實(shí)數(shù)a的值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤(rùn)=售價(jià)﹣制造成本)

(1)寫(xiě)出每月的利潤(rùn)w(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬(wàn)元的利潤(rùn)?

(3)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:AFBG;BN=NF;;S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①位似圖形都相似;②位似圖形都是平移后再放大(或縮小)得到;③直角三角形斜邊上的中線與斜邊的比為1:2;④兩個(gè)相似多邊形的面積比為4:9,則周長(zhǎng)的比為16:81中,正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的拋物線是二次函數(shù)a≠0)的圖象,則下列結(jié)論:①abc0;②b+2a=0拋物線與x軸的另一個(gè)交點(diǎn)為(4,0);④a+cb;⑤3a+c0.其中正確的結(jié)論有

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形。

1)如圖1,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60得到△DBE,DCB=30,連接AD,DC,CE

①求證:△BCE是等邊三角形;

②求證:四邊形ABCD是勾股四邊形。

2)如圖2已知等邊ABC的邊長(zhǎng)等于4平面上存在一點(diǎn)P若使四邊形PABC形成勾股四邊形且PC=2,PA,PC不能同時(shí)成為一組勾股邊,直接寫(xiě)出此時(shí)PBC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)yx2的圖象經(jīng)過(guò)(a,b),(a+1,b+k)兩點(diǎn),并且與反比例函數(shù)的圖象交于第一象限內(nèi)一點(diǎn)A

1)求反比例函數(shù)的解析式;

2)請(qǐng)問(wèn):在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,直接寫(xiě)出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案