【題目】某商場計(jì)劃從廠家購進(jìn)甲、乙兩種不同型號(hào)的電視機(jī),已知進(jìn)價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元.

(1)若商場同時(shí)購進(jìn)這兩種不同型號(hào)的電視機(jī)50臺(tái),金額不超過76000元,商場有幾種進(jìn)貨方案,并寫出具體的進(jìn)貨方案.

(2)(1)的條件下,若商場銷售一臺(tái)甲、乙型號(hào)的電視機(jī)的銷售價(jià)分別為1650元、2300元,以上進(jìn)貨方案中,哪種進(jìn)貨方案獲利最多?最多為多少元?

【答案】1)有2種進(jìn)貨方案:方案一:是購進(jìn)甲種型號(hào)的電視機(jī)49臺(tái),乙種型號(hào)的電視機(jī)1臺(tái);方案二:是甲種型號(hào)的電視機(jī)50臺(tái),乙種型號(hào)的電視機(jī)0臺(tái);(2)方案一的利潤大,最多為7550元.

【解析】

1)設(shè)購進(jìn)甲種型號(hào)的電視機(jī)x臺(tái),則乙種型號(hào)的電視機(jī)y臺(tái).?dāng)?shù)量關(guān)系為:兩種不同型號(hào)的電視機(jī)50臺(tái),金額不超過76000元;

2)根據(jù)利潤=數(shù)量×(售價(jià)-進(jìn)價(jià)),列出式子進(jìn)行計(jì)算,即可得到答案.

解:(1)設(shè)購進(jìn)甲種型號(hào)的電視機(jī)x臺(tái),則乙種型號(hào)的電視機(jī)(50-x)臺(tái).則

1500x+210050-x≤76000,

解得:x≥48

50≥x≥48

x是整數(shù),

x=49x=50

故有2種進(jìn)貨方案:

方案一:是購進(jìn)甲種型號(hào)的電視機(jī)49臺(tái),乙種型號(hào)的電視機(jī)1臺(tái);

方案二:是甲種型號(hào)的電視機(jī)50臺(tái),乙種型號(hào)的電視機(jī)0臺(tái);

2)方案一的利潤為:49×1650-1500+2300-2100=7550(元)

方案二的利潤為:50×1650-1500=7500(元).

75507500

∴方案一的利潤大,最多為7550元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABO的頂點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點(diǎn),ABx軸于B,且SABO=

(1)直接寫出這兩個(gè)函數(shù)的關(guān)系式;

(2)求△AOC的面積;

(3)根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),反比例函數(shù)的值小于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1y=x-3x軸,y軸分別交于點(diǎn)A和點(diǎn)B

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)將直線l1向上平移6個(gè)單位后得到直線l2,求直線l2的函數(shù)解析式;

3)設(shè)直線l2x軸的交點(diǎn)為M,則MAB的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的邊在直線l上,,且,的邊也在直線上,邊和邊重合,且

1)圖①中,請(qǐng)你通過觀察、測量、猜想,直接寫出的數(shù)量關(guān)系和位置關(guān)系;

2)將沿直線l向右平移得到圖②的位置時(shí),于點(diǎn)D,連接,,

求證:①;②;

3)將沿直線l向右平移得到圖③的位置時(shí),延長的延長線于點(diǎn)D,連接,,你認(rèn)為,還成立嗎?若成立,給予證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某游樂園有一個(gè)滑梯高度AB,高度AC3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)

(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB、AC是圓O的兩條弦,AB=AC,過圓心O作OHAC于點(diǎn)H.

(1)如圖1,求證:B=C;

(2)如圖2,當(dāng)H、O、B三點(diǎn)在一條直線上時(shí),求BAC的度數(shù);

(3)如圖3,在(2)的條件下,點(diǎn)E為劣弧BC上一點(diǎn),CE=6,CH=7,連接BC、OE交于點(diǎn)D,求BE的長和的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨(dú)特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為金魚,另外一張卡片的正面圖案為蝴蝶,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機(jī)抽取一張,記錄圖案后放回,重新洗勻后再從中隨機(jī)抽取一張.請(qǐng)用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是金魚的概率.(圖案為金魚的兩張卡片分別記為A1、A2,圖案為蝴蝶的卡片記為B)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)轉(zhuǎn)盤(如圖所示),被分成6個(gè)相等的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚(gè)扇形的交線時(shí),重新轉(zhuǎn)動(dòng)).下列事件:①指針指向紅色;②指針指向綠色;③指針指向黃色;④指針不指向黃色.估計(jì)各事件的可能性大小,完成下列問題:

(1)可能性最大和最小的事件分別是哪個(gè)?(填寫序號(hào))

(2)將這些事件的序號(hào)按發(fā)生的可能性從小到大的順序排列:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=-x2+bx+c與直線y=-x的交點(diǎn)A、B的橫坐標(biāo)分別為2.點(diǎn)P是直線上方拋物線上的一動(dòng)點(diǎn),過點(diǎn)PPD⊥AB于點(diǎn)D,作PE⊥x軸交AB于點(diǎn)E.

(1)直接寫出點(diǎn)A、B的坐標(biāo);

(2)求拋物線的關(guān)系式;

(3)判斷△OBC形狀,并說明理由;

(4)設(shè)點(diǎn)P的橫坐標(biāo)為n,線段PD的長為y,求y關(guān)于n的函數(shù)關(guān)系式;

(5)定義符號(hào)min{a,b)}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如min{2,0}=0,min{-3,4}=-3.直接寫出min{-x2+bx+c,-x}的最大值.

查看答案和解析>>

同步練習(xí)冊答案