【題目】已知:二次函數(shù)y=﹣x2+x+c與x軸交于點M(x1,0)N(x2,0)兩點,與y軸交于點H.
(1)若∠HMO=45°,∠MHN=105°時,求函數(shù)解析式;
(2)若|x1|2+|x2|2=1,當點Q(b,c)在直線上時,求二次函數(shù)y=﹣x2+x+c的解析式.
【答案】(1)y=﹣x2+(1﹣)x+;(2)y=﹣x2+x+.
【解析】
(1)由已知可得兩個特殊的直角三角形,其公共直角邊OH=c,解直角三角形得OM,ON的長度,用長度表示點M、N的橫坐標,用兩根關系求待定系數(shù),即可確定二次函數(shù)關系式;
(2)由(1)可知x1=﹣c,x2=c,代入已知條件,用待定系數(shù)法解答即可.
(1)依題意得:OH=c,∠OHN=60°,解直角三角形得:OM=OH=c,ON=c,即M(﹣c,0),N(c,0),∴﹣c+c=,﹣cc=﹣c,解得:b=3﹣,c=,故函數(shù)解析式y=﹣x2+(1﹣)x+;
(2)由|x1|2+|x2|2=1得:(x1+x2)2﹣2x1x2=1,∴+2c=1…①.
又∵點Q(b,c)在直線上,∴c=+…②,由①②得:或(不合題意舍去),∴二次函數(shù)y=﹣x2+x+c的解析式y=﹣x2+x+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(﹣2,1),B(1,0),將線段AB繞著點B順時針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為改善南寧市的交通現(xiàn)狀,市政府決定修建地鐵,甲、乙兩工程隊承包地鐵1號線的某段修建工作,從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的3倍;若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作10天完成.
求甲、乙兩隊單獨完成這項工程各需多少天?
已知甲隊每天的施工費用為萬元,乙隊每天的施工費用為萬元,工程預算的施工費用為500萬元,為縮短工期,擬安排甲、乙兩隊同時開工合作完成這項工程,那么工程預算的施工費用是否夠用?若不夠用,需增加多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,一個長為,寬為的長方形,沿途中的虛線用剪刀均勻的分成四個小長方形,然后按圖②的形狀拼成一個正方形.
(1)觀察圖②,請用兩種不同的方法求圖②中陰影部分的面積.
方法1:________________________________________(只列式,不化簡)
方法2:________________________________________(只列式,不化簡)
(2)請寫出三個式子之間的等量關系:_______________________________.
(3)根據(jù)(2)題中的等量關系,解決如下問題:若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱的底面半徑為,圓柱高為,是底面直徑,求一只螞蟻從點出發(fā)沿圓柱表面爬行到點的最短路線,小明設計了兩條路線:
路線1:高線底面直徑,如圖所示,設長度為.
路線2:側(cè)面展開圖中的線段,如圖所示,設長度為.
請按照小明的思路補充下面解題過程:
(1)解:
;
(2)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱底面半徑為,高為”繼續(xù)按前面的路線進行計算.(結(jié)果保留)
①此時,路線1:__________.路線2:_____________.
②所以選擇哪條路線較短?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點P從A出發(fā),沿A→B→C→D的路線運動,到D停止;點Q從D點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.
(1)求出a值;
(2)設點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關系式;
(3)求P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com