【題目】如圖,在△ABC中,D是AC邊上的中點,連結BD,把△BDC′沿BD翻折,得到△,DC與AB交于點E,連結,若AD=AC′=2,BD=3則點D到BC的距離為( )
A.B.C.D.
【答案】B
【解析】
連接CC′,交BD于點M,過點D作DH⊥BC于點H,由翻折知,△BDC≌△BDC’,BD垂直平分CC,證△ADC為等邊三角形,利用解直角三角形求出DM=1,CM= =,BM=2,在Rt△BMC'中,利用勾股定理求出BC′的長,在△BDC中利用面積法求出DH的長.
解:如圖,連接CC′,交BD于點M,過點D作DH⊥BC′于點H,
∵AD=AC'=2,D是AC邊上的中點,
∴DC=AD=2,
由翻折知,△BDC≌△BDC′,BD垂直平分CC′,
∴DC=DC′=2,BC=BC′,CM=C′M,
∴AD=AC'=DC′=2,
∴△ADC′為等邊三角形,
∴∠ADC=∠AC′D=∠C′AC=60°,
∵DC=DC′,
∴∠DCC′=∠DC′C= ×60°=30°,
在Rt△CDM中,∠DC′C=30°,DC′=2,
∴DM=1,C′M=DM= ,
·.BM=BD-DM=3-1=2,
在Rt△BMC中,BC′=
∴.BM=BD-DM=3-1=2,
在Rt△C'DM中,
∴
∴
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點A(-1,0),點B(-3,0),且OB=OC,
(1)求拋物線的解析式;
(2)點P在拋物線上,且∠POB=∠ACB,求點P的坐標;
(3)拋物線上兩點M,N,點M的橫坐標為m,點N的橫坐標為m+4.點D是拋物線上M,N之間的動點,過點D作y軸的平行線交MN于點E.
①求DE的最大值.
②點D關于點E的對稱點為F.當m為何值時,四邊形MDNF為矩形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從0,1,2,3,4,5,6這七個數(shù)中,隨機抽取一個數(shù),記為a,若a使關于x的不等式組的解集為x>1,且使關于x的分式方程=2的解為非負數(shù),那么取到滿足條件的a值的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點B的坐標為(1,0),點C的坐標為(0,4);點D的坐標為(0,2),點P為二次函數(shù)圖象上的動點.
(1)求二次函數(shù)的表達式;
(2)當點P位于第二象限內二次函數(shù)的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設平行四邊形APED的面積為S,求S的最大值;
(3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,已知拋物線的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉90°后,點C的對應點C′恰好落在y軸上.
(1)直接寫出D點和E點的坐標;
(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設點H的橫坐標為m(0<m<4),那么當m為何值時,=5:6?
(3)圖2所示的拋物線是由向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在初中階段的函數(shù)學習中,我們經歷了“確定函數(shù)的表達式——利用函數(shù)圖象研究其性質一一運用函數(shù)解決問題"的學習過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學的函數(shù)圖象.同時,我們也學習了絕對值的意義.結合上面經歷的學習過程,現(xiàn)在來解決下面的問題在函數(shù)中,當時,當時,
(1)求這個函數(shù)的表達式;
(2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數(shù)的圖象井并寫出這個函數(shù)的一條性質;
(3)已知函的圖象如圖所示,結合你所畫的函數(shù)圖象,直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經過點A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿的方向運動,到達點C時停止,設運動時間為x(秒),,則y關于x的函數(shù)的圖像大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直角三角形ACB,AC=3,BC=4,過直角頂點C作CA1⊥AB,垂足為A1,再過A1作A1C1⊥BC,垂足為C1;過CA1作C1A2⊥AB,垂足為A2,再過A2作A2C2⊥BC,垂足為C2;…,這樣一直做下去,得到一組線段A1C1,C2A2,…,則線段AnCn=___.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com