(滿(mǎn)分l3分)如圖,在△ABC中,∠A=90°,AB=4,AC=3,點(diǎn)M是AB上的動(dòng)點(diǎn)(不與A,B重合),過(guò)點(diǎn)M作MN∥BC交AC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN,令A(yù)M=x.

(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時(shí),⊙O與直線BC相切?

解:(1) ∵M(jìn)N∥BC,∴∠AMN=∠B,∠ANM=∠C.

∴△AMN∽△ABC.∴
∴AN=x.                                       ……4分
∴S=S△MNP=S△AMN=·x·x=x2.(0<x<4)
(2)如圖D4—4,設(shè)直線BC與⊙O相切于點(diǎn)D,連結(jié)AO,OD,則
AO=OD=MN.
在Rt△ABC中,BC==5.
由(1)知△AMN∽△ABC.
,∴MN=
∴OD=                                        ……9分
過(guò)點(diǎn)M作MQ⊥BC于Q,則MQ=OD=
在Rt△BMQ與Rt△BAC中,∠B是公共角,∴△BMQ∽△BAC
.∴BM==.AB=BM+AM=+x=4.
∴x=,即當(dāng)x=時(shí),⊙O與BC相切.          ……13分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(滿(mǎn)分l3分)如圖,對(duì)稱(chēng)軸為直線x=一的拋物線經(jīng)過(guò)點(diǎn)A(-6,0)和點(diǎn)B(0,4).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第三象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求OEAF的面積S與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
①當(dāng)OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(滿(mǎn)分l3分)如圖,在△ABC中,∠A=90°,AB=4,AC=3,點(diǎn)M是AB上的動(dòng)點(diǎn)(不與A,B重合),過(guò)點(diǎn)M作MN∥BC交AC于點(diǎn)N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN,令A(yù)M=x.

(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時(shí),⊙O與直線BC相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省初中畢業(yè)生學(xué)業(yè)考試模擬試卷數(shù)學(xué)卷 題型:解答題

(滿(mǎn)分l3分)如圖,對(duì)稱(chēng)軸為直線x=一的拋物線經(jīng)過(guò)點(diǎn)A(-6,0)和點(diǎn)B(0,4).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于第三象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求OEAF的面積S與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
①當(dāng)OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案