(11·貴港)(本題滿分11分)

如圖所示,在以O為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.

(1)求證:△AOB∽△BDC;

(2)設大圓的半徑為x,CD的長為y:

① 求y與x之間的函數(shù)關系式;

② 當BE與小圓相切時,求x的值.

 

【答案】

(1)證明:如圖,∵AB與小圓相切于點A,CD與大圓相交于點C,

∴∠OAB=∠OCD=90°

∵BC⊥AB    ∴∠CBA=∠CBD=90°………………1分

∵∠1+∠OBC=90°    ∠2+∠OCB=90°

又∵OC=OB

∴∠OBC=∠OCB

∴∠1=∠2………………2分

∴△AOB∽△BDC………………3分

(2)解:①過點O作OF⊥BC于點F,則四邊形OABF是矩形………………4分

∴BF=OA=1

由垂徑定理,得BC=2BF=2………………5分

在Rt△AOB中,OA=1,OB=x

∴AB=………………6分

由(1)得△AOB∽△BDC

   即

∴y=(或y=)………………7分

② 當BE與小圓相切時,OE⊥BE

∵OE=1,OC=x

∴EC=x-1  BE=AB=………………8分

在Rt△BCE中,EC2+BE2=BC2

即(x-1)2+()2=22………………9分

解得:x1=2    x2=-1(舍去)………………10分

∴當BE與小圓相切時,x=2………………11分

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分11分)

如圖所示,在以O為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.

(1)求證:△AOB∽△BDC;

(2)設大圓的半徑為x,CD的長為y:

① 求y與x之間的函數(shù)關系式;

② 當BE與小圓相切時,求x的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分10分)

隨著人們經(jīng)濟收入的不斷提高及汽車產(chǎn)業(yè)的快速發(fā)展,汽車已越來越多地進入普通家庭.據(jù)某市交通部門統(tǒng)計,2008年底該市汽車擁有量為75萬輛,而截止到2010年底,該市的汽車擁有量已達108萬輛.

(1)求2008年底至2010年底該市汽車擁有量的年平均增長率;

(2)為了保護城市環(huán)境,緩解汽車擁堵狀況,該市交通部門擬控制汽車總量,要求到2012

年底全市汽車擁有量不超過125.48萬輛;另據(jù)統(tǒng)計,從2011年初起,該市此后每年報廢的

汽車數(shù)量是上年底汽車擁有量的10%假設每年新增汽車數(shù)量相同,請你估算出該市從2011

年初起每年新增汽車數(shù)量最多不超過多少萬輛.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分9分)

如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.

(1)求證:四邊形ABED是菱形;

(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分9分)

 “校園手機”現(xiàn)象越來越受到社會的關注.為了了解學生和家長對中學生帶手機的態(tài)度,某記者隨機調(diào)查了城區(qū)若干名學生和家長的看法,調(diào)查結果分為:贊成、無所謂、反對,并將調(diào)查結果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖:

根據(jù)以上圖表信息,解答下列問題:

(1)統(tǒng)計表中的A=_   ▲   ;

(2)統(tǒng)計圖中表示家長“贊成”的圓心角的度數(shù)為_   ▲   度;

(3)從這次接受調(diào)查的學生中,隨機抽查一個,恰好是持“反對”態(tài)度的學生的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分6分)

按要求用尺規(guī)作圖(只保留作圖痕跡,不必寫出作法)

(1)在圖(1)中作出∠ABC的平分線;(2)在圖(2)中作出△DEF的外接圓O.

 

查看答案和解析>>

同步練習冊答案