47、探究題.
(1)計(jì)算下列各題:
①(x-1)(x+1);
②(x-1)(x2+x+1);
③(x-1)(x3+x2+x+1);
④(x-1)(x4+x3+x2+x+1);

(2)猜想:(x-1)(xn+xn-1+xn-2+…+x+1)的結(jié)果是什么?
(3)證明你的猜想是否正確.
分析:可以用多項(xiàng)式乘以多項(xiàng)式驗(yàn)證想法,得出
(1)中答案;
(2)根據(jù)規(guī)律猜想出結(jié)果為xn+1-1;
(3)利用多項(xiàng)式乘以多項(xiàng)式的方法進(jìn)行計(jì)算,展開后可知中間的項(xiàng)會(huì)相互抵消,只剩下第一項(xiàng)和最后一項(xiàng).
解答:解:
(1)①(x-1)(x+1)=x2-1;
②(x-1)(x2+x+1)=x3-1;
③(x-1)(x3+x2+x+1)=x4-1;
④(x-1)(x4+x3+x2+x+1)=x5-1.

(2)(x-1)(xn+xn-1+xn-2+…+x+1)=xn+1-1.

(3)原式=xn+1+xn+xn-1+…+x2+x-xn-xn-1-…-x-1=xn+1-1.
點(diǎn)評(píng):本題是個(gè)閱讀材料題,要會(huì)從所給出的數(shù)列中找到它們的規(guī)律.主要考查了學(xué)生的歸納總結(jié)能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

探究題:可直接寫結(jié)果
觀察下列式子:(x2-1)÷(x-1)=x+1;
(x3-1)÷(x-1)=x2+x+1;
(x4-1)÷(x-1)=x3+x2+x+1
(x5-1)÷(x-1)=x4+x3+x2+x+1
(1)你能得到一般情況下(xn-1)÷(x-1)的結(jié)果嗎?(n為正整數(shù))
(2)根據(jù)(1)的結(jié)果計(jì)算:1+2+22+23+24+…+262+263

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

下面的問題形式上比較復(fù)雜,但若能把握問題的關(guān)鍵,找準(zhǔn)解決問題的切入點(diǎn),問題的解法還是比較簡單的。請(qǐng)你探究一下計(jì)算下面的題,結(jié)果是2004,想好了,方法非常簡單.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044

一透明的敞口正方體容器ABCD裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖①所示).

探究如圖①,液面剛好過棱CD,并與棱B交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如圖②所示.解決問題:

(1)CQBE的位置關(guān)系是________,BQ的長是________dm;

(2)求液體的體積;(參考算法:直棱柱體積V液=底面積SBCQ×高AB)

(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)

拓展在圖①的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖③或圖④是其正面示意圖.若液面與棱CCB交于點(diǎn)P,設(shè)PCx,BQy.分別就圖③和圖④求yx的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.

[溫馨提示:下頁還有題!]

延伸在圖④的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計(jì)),得到圖⑤,隔板高NM=1 dm,BMCMNMBC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α=60°時(shí),通過計(jì)算,判斷溢出容器的液體能否達(dá)到4 dm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探究題:可直接寫結(jié)果
觀察下列式子:(x2-1)÷(x-1)=x+1;
(x3-1)÷(x-1)=x2+x+1;
(x4-1)÷(x-1)=x3+x2+x+1
(x5-1)÷(x-1)=x4+x3+x2+x+1
(1)你能得到一般情況下(xn-1)÷(x-1)的結(jié)果嗎?(n為正整數(shù))
(2)根據(jù)(1)的結(jié)果計(jì)算:1+2+22+23+24+…+262+263

查看答案和解析>>

同步練習(xí)冊(cè)答案