二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為直線x=1,有如下結(jié)論:
①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的兩根為x1,x2,則x1+x2=2,
則正確的結(jié)論是( )

A.①②
B.①③
C.②④
D.③④
【答案】分析:由拋物線與y軸的交點在1的上方,得到c大于1,故選項①錯誤;由拋物線的對稱軸為x=1,利用對稱軸公式得到關(guān)于a與b的關(guān)系,整理得到2a+b=0,選項②正確;由拋物線與x軸的交點有兩個,得到根的判別式大于0,整理可判斷出選項③錯誤;令拋物線解析式中y=0,得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系表示出兩根之和,將得到的a與b的關(guān)系式代入可得出兩根之和為2,選項④正確,即可得到正確的選項.
解答:解:由拋物線與y軸的交點位置得到:c>1,選項①錯誤;
∵拋物線的對稱軸為x=-=1,∴2a+b=0,選項②正確;
由拋物線與x軸有兩個交點,得到b2-4ac>0,即b2>4ac,選項③錯誤;
令拋物線解析式中y=0,得到ax2+bx+c=0,
∵方程的兩根為x1,x2,且-=1,及-=2,
∴x1+x2=-=2,選項④正確,
綜上,正確的結(jié)論有②④.
故選C
點評:此題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c(a≠0),a的符號由開口方向決定,c的符號由拋物線與y軸交點的位置確定,b的符號由a及對稱軸的位置確定,拋物線與x軸交點的個數(shù)決定根的判別式的符號.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網(wǎng)點C(0,
3
)
,當x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實數(shù)a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案