【題目】如圖,已知∠AOB=30°,P是∠AOB平分線上一點(diǎn),CP∥OB,交OA于點(diǎn)C,PD⊥OB,垂足為點(diǎn)D,且PC=4,則PD等于(

A.1
B.2
C.4
D.8

【答案】B
【解析】解:作PE⊥OA于E,如圖,
∵CP∥OB,
∴∠ECP=∠AOB=30°,
在Rt△EPC中,PE= PC= ×4=2,
∵P是∠AOB平分線上一點(diǎn),PE⊥OA,PD⊥OB,
∴PD=PE=2.
故選B.

作PE⊥OA于E,如圖,先利用平行線的性質(zhì)得∠ECP=∠AOB=30°,則PE= PC=2,然后根據(jù)角平分線的性質(zhì)得到PD的長.本題考查了角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等.解決本題的關(guān)鍵是把求P點(diǎn)到OB的距離轉(zhuǎn)化為點(diǎn)P到OA的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請仔細(xì)觀察圖中等邊三角形圖形的變化規(guī)律,寫出你發(fā)現(xiàn)關(guān)于等邊三角形內(nèi)一點(diǎn)到三邊距離的數(shù)學(xué)事實(shí):_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,BC=3,點(diǎn)E、F分別是CB、CD延長線上的點(diǎn),DF=BE,連接AE、AF,過點(diǎn)A作AH⊥ED于H點(diǎn).

(1)求證:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O,若1=38°,則BDE的度數(shù)為( 。

A. 71° B. 76° C. 78° D. 80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.拋物線y= x2+bx+c經(jīng)過點(diǎn)C,且對稱軸為x=﹣ ,并與y軸交于點(diǎn)G.

(1)求拋物線的解析式及點(diǎn)G的坐標(biāo);
(2)將Rt△ABC沿x軸向右平移m個(gè)單位,使B點(diǎn)移到點(diǎn)E,然后將三角形繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α°得到△DEF.若點(diǎn)F恰好落在拋物線上.
①求m的值;
②連接CG交x軸于點(diǎn)H,連接FG,過B作BP∥FG,交CG于點(diǎn)P,求證:PH=GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四個(gè)完全相同的小球上分別標(biāo)上1,2,3,4四個(gè)數(shù)字,然后裝入一個(gè)不透明的口袋里攪勻,小明同學(xué)隨機(jī)摸取一個(gè)小球記下標(biāo)號(hào),然后放回,再隨機(jī)摸取一個(gè)小球,記下標(biāo)號(hào).
(1)請你用畫樹狀圖或列表的方法分別表示小明同學(xué)摸球的所有可能出現(xiàn)的結(jié)果.
(2)按照小明同學(xué)的摸球方法,把第一次取出的小球的數(shù)字作為點(diǎn)M的橫坐標(biāo),把第二次取出的小球的數(shù)字作為點(diǎn)M的縱坐標(biāo),試求出點(diǎn)M(x,y)落在直線y=x上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)經(jīng)過A(﹣1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在拋物線的對稱軸上,當(dāng)△ACP的周長最小時(shí),求出點(diǎn)P的坐標(biāo);
(3)點(diǎn)N在拋物線上,點(diǎn)M在拋物線的對稱軸上,是否存在以點(diǎn)N為直角頂點(diǎn)的Rt△DNM與Rt△BOC相似?若存在,請求出所有符合條件的點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=C=90°,AB=AD,AEBC,垂足為E,若線段AE=3,則四邊形ABCD的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是邊長為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PM⊥CP交AB于點(diǎn)D,且PM=CP,過點(diǎn)M作MN∥AO,交BO于點(diǎn)N,連結(jié)ND、BM,設(shè)OP=t.

(1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長度是否隨點(diǎn)P的位置的變化而改變?并說明理由.
(3)當(dāng)t為何值時(shí),四邊形BNDM的面積最;
(4)在x軸正半軸上存在點(diǎn)Q,使得△QMN是等腰三角形,請直接寫出不少于4個(gè)符合條件的點(diǎn)Q的坐標(biāo)(用含t的式子表示).

查看答案和解析>>

同步練習(xí)冊答案