(2008•西藏)已知:如圖,AB是⊙O的直徑.OD⊥AB.交⊙O于點F,點C是⊙O上一點,連接OC、AC、BC.AC的延長線交OD于點D,BC交OD于點E.
(1)證明:∠OCE=∠ODC;
(2)證明:OC2=OE•OD;
(3)如果點C在
AF
上運動(與點A、點F不重合).當OA=2時,△AOD面積用y表示,設OE=x,寫出面積y與x的函數(shù)表達式,并確定自變量x的取值范圍.
分析:(1)根據(jù)圓的半徑相等可得OA=OC,再根據(jù)等邊對等角求出∠A=∠ACO,然后利用等角的余角相等求解即可;
(2)先求出△OCE和△ODC相似,再根據(jù)相似三角形對應邊成比例列式求解即可;
(3)根據(jù)(2)的結論表示出OD,然后根據(jù)三角形的面積公式列式整理即可得解,根據(jù)點E在OD上確定x的取值范圍即可.
解答:(1)證明:∵OA=OC,
∴∠A=∠ACO,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠OCE=90°,
∵OD⊥AB,
∴∠ODC+∠A=90°,
∴∠OCE=∠ODC;

(2)證明:∵∠OCE=∠ODC,∠COE=∠DOC,
∴△OCE∽△ODC,
OC
OD
=
OE
OC

∴OC2=OE•OD;

(3)解:∵OA=2,
∴OC=2,
又∵OC2=OE•OD,OE=x,
∴22=x•OD,
∴OD=
4
x

∴△AOD的面積y=
1
2
OA•OD=
1
2
×2×
4
x
=
4
x
,
即y=
4
x
,
∵點C在
AF
上運動(與點A、點F不重合),
∴點E在OD上,(與點O、點D不重合),
∴0<x<2.
點評:本題是圓的綜合題型,主要考查了同一個圓的半徑相等,等邊對等角的性質,等角的余角相等,相似三角形的判定與性質,以及三角形的面積,綜合題,但難度不大,仔細分析便不難求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2008•西藏)已知:如圖,直線a∥b,直線c與直線a、b相交.∠1=120°,則∠2的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•西藏)已知⊙O和直線a,⊙O的半徑是5,圓心O到直線a的距離是3,則直線a和⊙O的位置關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•西藏)如圖,已知?ABCD,按要求完成下列各題.
(1)過點A作AE⊥BD交BD于點E,過點C作CF⊥BD交BD于點F.
(2)證明:△ABE≌△CDF.

查看答案和解析>>

同步練習冊答案